NicholasCorrado
commited on
Commit
•
8f19dbd
1
Parent(s):
d4ff4b2
Model save
Browse files- README.md +100 -0
- all_results.json +9 -0
- generation_config.json +6 -0
- train_results.json +9 -0
README.md
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: alignment-handbook/zephyr-7b-sft-full
|
5 |
+
tags:
|
6 |
+
- trl
|
7 |
+
- dpo
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: zephyr-7b-uf-rlced-conifer-group-dpo-2e-alr-0.01
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# zephyr-7b-uf-rlced-conifer-group-dpo-2e-alr-0.01
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.2395
|
22 |
+
- Rewards/chosen: -2.8511
|
23 |
+
- Rewards/rejected: -8.5888
|
24 |
+
- Rewards/accuracies: 0.8778
|
25 |
+
- Rewards/margins: 5.7377
|
26 |
+
- Logps/rejected: -1262.6172
|
27 |
+
- Logps/chosen: -677.5837
|
28 |
+
- Logits/rejected: 3.8778
|
29 |
+
- Logits/chosen: 1.9376
|
30 |
+
- Excess Loss: 0.0374
|
31 |
+
- Alpha 0 Uf: 0.5116
|
32 |
+
- Alpha 1 Rlced Conifer: 0.4884
|
33 |
+
- Rewards/chosen 1 Rlced Conifer: -3.0535
|
34 |
+
- Rewards/rejected 1 Rlced Conifer: -10.0348
|
35 |
+
- Rewards/accuracies 1 Rlced Conifer: 0.9097
|
36 |
+
- Rewards/margins 1 Rlced Conifer: 6.9812
|
37 |
+
- Logps/rejected 1 Rlced Conifer: -1451.0132
|
38 |
+
- Logps/chosen 1 Rlced Conifer: -728.9337
|
39 |
+
- Logits/rejected 1 Rlced Conifer: 3.5676
|
40 |
+
- Logits/chosen 1 Rlced Conifer: 1.5730
|
41 |
+
- Task Loss 1 Rlced Conifer: 0.1787
|
42 |
+
- Task Excess Loss 1 Rlced Conifer: 0.0427
|
43 |
+
- Rewards/chosen 0 Uf: -2.0820
|
44 |
+
- Rewards/rejected 0 Uf: -3.4336
|
45 |
+
- Rewards/accuracies 0 Uf: 0.7633
|
46 |
+
- Rewards/margins 0 Uf: 1.3516
|
47 |
+
- Logps/rejected 0 Uf: -584.9677
|
48 |
+
- Logps/chosen 0 Uf: -497.4562
|
49 |
+
- Logits/rejected 0 Uf: 5.1753
|
50 |
+
- Logits/chosen 0 Uf: 3.1000
|
51 |
+
- Task Loss 0 Uf: 0.5185
|
52 |
+
- Task Excess Loss 0 Uf: 0.0724
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 5e-07
|
72 |
+
- train_batch_size: 8
|
73 |
+
- eval_batch_size: 8
|
74 |
+
- seed: 42
|
75 |
+
- distributed_type: multi-GPU
|
76 |
+
- num_devices: 8
|
77 |
+
- gradient_accumulation_steps: 4
|
78 |
+
- total_train_batch_size: 256
|
79 |
+
- total_eval_batch_size: 64
|
80 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
81 |
+
- lr_scheduler_type: cosine
|
82 |
+
- lr_scheduler_warmup_ratio: 0.1
|
83 |
+
- num_epochs: 2
|
84 |
+
|
85 |
+
### Training results
|
86 |
+
|
87 |
+
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Excess Loss | Alpha 0 Uf | Alpha 1 Rlced Conifer | Rewards/chosen 1 Rlced Conifer | Rewards/rejected 1 Rlced Conifer | Rewards/accuracies 1 Rlced Conifer | Rewards/margins 1 Rlced Conifer | Logps/rejected 1 Rlced Conifer | Logps/chosen 1 Rlced Conifer | Logits/rejected 1 Rlced Conifer | Logits/chosen 1 Rlced Conifer | Task Loss 1 Rlced Conifer | Task Excess Loss 1 Rlced Conifer | Rewards/chosen 0 Uf | Rewards/rejected 0 Uf | Rewards/accuracies 0 Uf | Rewards/margins 0 Uf | Logps/rejected 0 Uf | Logps/chosen 0 Uf | Logits/rejected 0 Uf | Logits/chosen 0 Uf | Task Loss 0 Uf | Task Excess Loss 0 Uf |
|
88 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:-----------:|:----------:|:---------------------:|:------------------------------:|:--------------------------------:|:----------------------------------:|:-------------------------------:|:------------------------------:|:----------------------------:|:-------------------------------:|:-----------------------------:|:-------------------------:|:--------------------------------:|:-------------------:|:---------------------:|:-----------------------:|:--------------------:|:-------------------:|:-----------------:|:--------------------:|:------------------:|:--------------:|:---------------------:|
|
89 |
+
| 0.1689 | 0.4997 | 360 | 0.2674 | -2.2066 | -5.7976 | 0.8656 | 3.5910 | -983.4942 | -613.1316 | 1.9639 | 0.4895 | 0.0642 | 0.5765 | 0.4235 | -2.3017 | -6.6520 | 0.8965 | 4.3503 | -1112.7397 | -653.7553 | 1.7066 | 0.1879 | 0.2091 | 0.0748 | -1.8461 | -2.7792 | 0.7426 | 0.9330 | -519.5245 | -473.8738 | 3.0556 | 1.4702 | 0.5392 | 0.0891 |
|
90 |
+
| 0.1413 | 0.9993 | 720 | 0.2485 | -2.0138 | -6.1196 | 0.8741 | 4.1059 | -1015.6987 | -593.8471 | 2.5252 | 1.3345 | 0.0465 | 0.6417 | 0.3583 | -2.0972 | -7.0507 | 0.9047 | 4.9535 | -1152.6036 | -633.2974 | 2.1536 | 1.0120 | 0.1925 | 0.0584 | -1.6822 | -2.7943 | 0.7670 | 1.1121 | -521.0374 | -457.4840 | 4.0168 | 2.3771 | 0.4989 | 0.0595 |
|
91 |
+
| 0.0671 | 1.4990 | 1080 | 0.2408 | -2.5432 | -7.7524 | 0.8741 | 5.2092 | -1178.9786 | -646.7894 | 3.9871 | 2.3348 | 0.0389 | 0.5284 | 0.4716 | -2.6717 | -8.9931 | 0.9071 | 6.3215 | -1346.8500 | -690.7497 | 3.5948 | 1.9516 | 0.1822 | 0.0462 | -2.0401 | -3.3250 | 0.7500 | 1.2849 | -574.1076 | -493.2740 | 5.5773 | 3.5557 | 0.5197 | 0.0655 |
|
92 |
+
| 0.0649 | 1.9986 | 1440 | 0.2395 | -2.8511 | -8.5888 | 0.8778 | 5.7377 | -1262.6172 | -677.5837 | 3.8778 | 1.9376 | 0.0374 | 0.5116 | 0.4884 | -3.0535 | -10.0348 | 0.9097 | 6.9812 | -1451.0132 | -728.9337 | 3.5676 | 1.5730 | 0.1787 | 0.0427 | -2.0820 | -3.4336 | 0.7633 | 1.3516 | -584.9677 | -497.4562 | 5.1753 | 3.1000 | 0.5185 | 0.0724 |
|
93 |
+
|
94 |
+
|
95 |
+
### Framework versions
|
96 |
+
|
97 |
+
- Transformers 4.44.2
|
98 |
+
- Pytorch 2.2.0a0+81ea7a4
|
99 |
+
- Datasets 2.21.0
|
100 |
+
- Tokenizers 0.19.1
|
all_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.9986120749479528,
|
3 |
+
"total_flos": 0.0,
|
4 |
+
"train_loss": 0.14047848768532276,
|
5 |
+
"train_runtime": 41218.966,
|
6 |
+
"train_samples": 184443,
|
7 |
+
"train_samples_per_second": 8.949,
|
8 |
+
"train_steps_per_second": 0.035
|
9 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.44.2"
|
6 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.9986120749479528,
|
3 |
+
"total_flos": 0.0,
|
4 |
+
"train_loss": 0.14047848768532276,
|
5 |
+
"train_runtime": 41218.966,
|
6 |
+
"train_samples": 184443,
|
7 |
+
"train_samples_per_second": 8.949,
|
8 |
+
"train_steps_per_second": 0.035
|
9 |
+
}
|