File size: 33,511 Bytes
d2bcf61
 
 
9d23511
d2bcf61
 
 
 
 
 
 
 
 
 
 
20b3fa0
 
 
 
 
 
 
 
 
 
 
 
 
 
d2bcf61
 
20b3fa0
 
 
 
 
 
 
 
 
 
 
 
d2bcf61
 
20b3fa0
 
 
 
 
 
 
 
 
 
 
 
 
 
d2bcf61
 
20b3fa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2bcf61
 
20b3fa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2bcf61
 
 
 
20b3fa0
d2bcf61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0326cd
03b972a
f0326cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a637885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2bcf61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
---
language:
- en
- es
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3012496
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: how to sign legal documents as power of attorney?
  sentences:
  - >-
    After the principal's name, write “by” and then sign your own name. Under or
    after the signature line, indicate your status as POA by including any of
    the following identifiers: as POA, as Agent, as Attorney in Fact or as Power
    of Attorney.
  - >-
    ['From the Home screen, swipe left to Apps.', 'Tap Transfer my Data.', 'Tap
    Menu (...).', 'Tap Export to SD card.']
  - >-
    Ginger Dank Nugs (Grape) - 350mg. Feast your eyes on these unique and
    striking gourmet chocolates; Coco Nugs created by Ginger Dank. Crafted to
    resemble perfect nugs of cannabis, each of the 10 buds contains 35mg of THC.
    ... This is a perfect product for both cannabis and chocolate lovers, who
    appreciate a little twist.
- source_sentence: how to delete vdom in fortigate?
  sentences:
  - >-
    Go to System -> VDOM -> VDOM2 and select 'Delete'. This VDOM is now
    successfully removed from the configuration.
  - >-
    Both combination birth control pills and progestin-only pills may cause
    headaches as a side effect. Additional side effects of birth control pills
    may include: breast tenderness. nausea.
  - >-
    White cheese tends to show imperfections more readily and as consumers got
    more used to yellow-orange cheese, it became an expected option. Today, many
    cheddars are yellow. While most cheesemakers use annatto, some use an
    artificial coloring agent instead, according to Sachs.
- source_sentence: where are earthquakes most likely to occur on earth?
  sentences:
  - >-
    Zelle in the Bank of the America app is a fast, safe, and easy way to send
    and receive money with family and friends who have a bank account in the
    U.S., all with no fees. Money moves in minutes directly between accounts
    that are already enrolled with Zelle.
  - >-
    It takes about 3 days for a spacecraft to reach the Moon. During that time a
    spacecraft travels at least 240,000 miles (386,400 kilometers) which is the
    distance between Earth and the Moon.
  - >-
    Most earthquakes occur along the edge of the oceanic and continental plates.
    The earth's crust (the outer layer of the planet) is made up of several
    pieces, called plates. The plates under the oceans are called oceanic plates
    and the rest are continental plates.
- source_sentence: fix iphone is disabled connect to itunes without itunes?
  sentences:
  - >-
    To fix a disabled iPhone or iPad without iTunes, you have to erase your
    device. Click on the "Erase iPhone" option and confirm your selection. Wait
    for a while as the "Find My iPhone" feature will remotely erase your iOS
    device. Needless to say, it will also disable its lock.
  - >-
    How Māui brought fire to the world. One evening, after eating a hearty meal,
    Māui lay beside his fire staring into the flames. ... In the middle of the
    night, while everyone was sleeping, Māui went from village to village and
    extinguished all the fires until not a single fire burned in the world.
  - >-
    Angry Orchard makes a variety of year-round craft cider styles, including
    Angry Orchard Crisp Apple, a fruit-forward hard cider that balances the
    sweetness of culinary apples with dryness and bright acidity of bittersweet
    apples for a complex, refreshing taste.
- source_sentence: how to reverse a video on tiktok that's not yours?
  sentences:
  - >-
    ['Tap "Effects" at the bottom of your screen — it\'s an icon that looks like
    a clock. Open the Effects menu. ... ', 'At the end of the new list that
    appears, tap "Time." Select "Time" at the end. ... ', 'Select "Reverse" —
    you\'ll then see a preview of your new, reversed video appear on the
    screen.']
  - >-
    Franchise Facts Poke Bar has a franchise fee of up to $30,000, with a total
    initial investment range of $157,800 to $438,000. The initial cost of a
    franchise includes several fees -- Unlock this franchise to better
    understand the costs such as training and territory fees.
  - >-
    Relative age is the age of a rock layer (or the fossils it contains)
    compared to other layers. It can be determined by looking at the position of
    rock layers. Absolute age is the numeric age of a layer of rocks or fossils.
    Absolute age can be determined by using radiometric dating.
datasets:
- sentence-transformers/gooaq
pipeline_tag: sentence-similarity
library_name: sentence-transformers
license: apache-2.0
---

# SentenceTransformer

This is a [sentence-transformers](https://www.SBERT.net) model trained on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** inf tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): StaticEmbedding(
    (embedding): EmbeddingBag(256000, 1024, mode='mean')
  )
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("NickyNicky/StaticEmbedding-MatryoshkaLoss-gemma-2-2b-gooaq-en")
# Run inference
sentences = [
    "how to reverse a video on tiktok that's not yours?",
    '[\'Tap "Effects" at the bottom of your screen — it\\\'s an icon that looks like a clock. Open the Effects menu. ... \', \'At the end of the new list that appears, tap "Time." Select "Time" at the end. ... \', \'Select "Reverse" — you\\\'ll then see a preview of your new, reversed video appear on the screen.\']',
    'Relative age is the age of a rock layer (or the fossils it contains) compared to other layers. It can be determined by looking at the position of rock layers. Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can be determined by using radiometric dating.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### gooaq

* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,012,496 training samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                                       | answer                                                                                           |
  |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                           |
  | details | <ul><li>min: 18 characters</li><li>mean: 43.23 characters</li><li>max: 96 characters</li></ul> | <ul><li>min: 55 characters</li><li>mean: 253.36 characters</li><li>max: 371 characters</li></ul> |
* Samples:
  | question                                                                           | answer                                                                                                                                                                                                                                                                                                                |
  |:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what is the difference between broilers and layers?</code>                   | <code>An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.</code>                |
  | <code>what is the difference between chronological order and spatial order?</code> | <code>As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.</code> |
  | <code>is kamagra same as viagra?</code>                                            | <code>Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.</code>                               |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          768,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### gooaq

* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,012,496 evaluation samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                                       | answer                                                                                           |
  |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                           |
  | details | <ul><li>min: 18 characters</li><li>mean: 43.17 characters</li><li>max: 98 characters</li></ul> | <ul><li>min: 51 characters</li><li>mean: 254.12 characters</li><li>max: 360 characters</li></ul> |
* Samples:
  | question                                                                     | answer                                                                                                                                                                                                                                                                                                                                     |
  |:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>how do i program my directv remote with my tv?</code>                  | <code>['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']</code>                                                                                               |
  | <code>are rodrigues fruit bats nocturnal?</code>                             | <code>Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.</code>                                                                                                  |
  | <code>why does your heart rate increase during exercise bbc bitesize?</code> | <code>During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          768,
          512,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 2048
- `learning_rate`: 0.2
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 2048
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.2
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0007 | 1    | 48.9183       | -               |
| 0.0682 | 100  | 24.7453       | 3.5934          |
| 0.1363 | 200  | 8.3975        | 2.4385          |
| 0.2045 | 300  | 6.3171        | 1.9962          |
| 0.2727 | 400  | 5.3817        | 1.7536          |
| 0.3408 | 500  | 4.8295        | 1.6392          |
| 0.4090 | 600  | 4.4745        | 1.5070          |
| 0.4772 | 700  | 4.1783        | 1.4406          |
| 0.5453 | 800  | 3.952         | 1.3655          |
| 0.6135 | 900  | 3.7352        | 1.3114          |
| 0.6817 | 1000 | 3.6185        | 1.2551          |
| 0.7498 | 1100 | 3.4514        | 1.2143          |
| 0.8180 | 1200 | 3.3535        | 1.1816          |
| 0.8862 | 1300 | 3.2741        | 1.1527          |
| 0.9543 | 1400 | 3.1862        | 1.1411          |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0


## NanoBEIREvaluator > 0.8

```
{
    "NanoDBPedia_cosine_accuracy@3": 0.86,
    "NanoDBPedia_cosine_accuracy@5": 0.92,
    "NanoDBPedia_cosine_accuracy@10": 0.96,
    "NanoFEVER_cosine_accuracy@3": 0.86,
    "NanoFEVER_cosine_accuracy@5": 0.92,
    "NanoFEVER_cosine_accuracy@10": 0.96,
    "NanoHotpotQA_cosine_accuracy@3": 0.82,
    "NanoHotpotQA_cosine_accuracy@5": 0.84,
    "NanoHotpotQA_cosine_accuracy@10": 0.88,
    "NanoQuoraRetrieval_cosine_accuracy@1": 0.88,
    "NanoQuoraRetrieval_cosine_accuracy@3": 0.96,
    "NanoQuoraRetrieval_cosine_accuracy@5": 1.0,
    "NanoQuoraRetrieval_cosine_accuracy@10": 1.0,
    "NanoSCIDOCS_cosine_accuracy@5": 0.82,
    "NanoSCIDOCS_cosine_accuracy@10": 0.92,
    "NanoArguAna_cosine_accuracy@10": 0.92,
    "NanoSciFact_cosine_accuracy@10": 0.88,
    "NanoTouche2020_cosine_accuracy@3": 0.8367346938775511,
    "NanoTouche2020_cosine_accuracy@5": 0.9183673469387755,
    "NanoTouche2020_cosine_accuracy@10": 0.9387755102040817,
    "NanoBEIR_mean_cosine_accuracy@10": 0.8583673469387756
}

````

## All NanoBEIREvaluator

```bibtext
{'NanoClimateFEVER_cosine_accuracy@1': 0.28,
 'NanoClimateFEVER_cosine_accuracy@3': 0.44,
 'NanoClimateFEVER_cosine_accuracy@5': 0.54,
 'NanoClimateFEVER_cosine_accuracy@10': 0.72,
 'NanoClimateFEVER_cosine_precision@1': 0.28,
 'NanoClimateFEVER_cosine_precision@3': 0.15333333333333332,
 'NanoClimateFEVER_cosine_precision@5': 0.124,
 'NanoClimateFEVER_cosine_precision@10': 0.08999999999999998,
 'NanoClimateFEVER_cosine_recall@1': 0.145,
 'NanoClimateFEVER_cosine_recall@3': 0.205,
 'NanoClimateFEVER_cosine_recall@5': 0.264,
 'NanoClimateFEVER_cosine_recall@10': 0.36200000000000004,
 'NanoClimateFEVER_cosine_ndcg@10': 0.2957527689242254,
 'NanoClimateFEVER_cosine_mrr@10': 0.3996666666666668,
 'NanoClimateFEVER_cosine_map@100': 0.23258384801937396,
 'NanoDBPedia_cosine_accuracy@1': 0.68,
 'NanoDBPedia_cosine_accuracy@3': 0.86,
 'NanoDBPedia_cosine_accuracy@5': 0.92,
 'NanoDBPedia_cosine_accuracy@10': 0.96,
 'NanoDBPedia_cosine_precision@1': 0.68,
 'NanoDBPedia_cosine_precision@3': 0.56,
 'NanoDBPedia_cosine_precision@5': 0.5120000000000001,
 'NanoDBPedia_cosine_precision@10': 0.43800000000000006,
 'NanoDBPedia_cosine_recall@1': 0.07601531530835434,
 'NanoDBPedia_cosine_recall@3': 0.1438904710839341,
 'NanoDBPedia_cosine_recall@5': 0.20681359525684506,
 'NanoDBPedia_cosine_recall@10': 0.319966975132044,
 'NanoDBPedia_cosine_ndcg@10': 0.5501100350453579,
 'NanoDBPedia_cosine_mrr@10': 0.7855000000000001,
 'NanoDBPedia_cosine_map@100': 0.39476156890024533,
 'NanoFEVER_cosine_accuracy@1': 0.68,
 'NanoFEVER_cosine_accuracy@3': 0.86,
 'NanoFEVER_cosine_accuracy@5': 0.92,
 'NanoFEVER_cosine_accuracy@10': 0.96,
 'NanoFEVER_cosine_precision@1': 0.68,
 'NanoFEVER_cosine_precision@3': 0.29333333333333333,
 'NanoFEVER_cosine_precision@5': 0.19199999999999995,
 'NanoFEVER_cosine_precision@10': 0.10199999999999998,
 'NanoFEVER_cosine_recall@1': 0.6266666666666666,
 'NanoFEVER_cosine_recall@3': 0.8133333333333332,
 'NanoFEVER_cosine_recall@5': 0.8833333333333333,
 'NanoFEVER_cosine_recall@10': 0.9233333333333333,
 'NanoFEVER_cosine_ndcg@10': 0.7933479848498471,
 'NanoFEVER_cosine_mrr@10': 0.7780793650793651,
 'NanoFEVER_cosine_map@100': 0.7406571665049926,
 'NanoFiQA2018_cosine_accuracy@1': 0.46,
 'NanoFiQA2018_cosine_accuracy@3': 0.64,
 'NanoFiQA2018_cosine_accuracy@5': 0.7,
 'NanoFiQA2018_cosine_accuracy@10': 0.72,
 'NanoFiQA2018_cosine_precision@1': 0.46,
 'NanoFiQA2018_cosine_precision@3': 0.2866666666666666,
 'NanoFiQA2018_cosine_precision@5': 0.22399999999999998,
 'NanoFiQA2018_cosine_precision@10': 0.12999999999999998,
 'NanoFiQA2018_cosine_recall@1': 0.23924603174603173,
 'NanoFiQA2018_cosine_recall@3': 0.4251031746031746,
 'NanoFiQA2018_cosine_recall@5': 0.5099603174603174,
 'NanoFiQA2018_cosine_recall@10': 0.566015873015873,
 'NanoFiQA2018_cosine_ndcg@10': 0.4774545077577204,
 'NanoFiQA2018_cosine_mrr@10': 0.5475555555555556,
 'NanoFiQA2018_cosine_map@100': 0.4125452702654584,
 'NanoHotpotQA_cosine_accuracy@1': 0.64,
 'NanoHotpotQA_cosine_accuracy@3': 0.82,
 'NanoHotpotQA_cosine_accuracy@5': 0.84,
 'NanoHotpotQA_cosine_accuracy@10': 0.88,
 'NanoHotpotQA_cosine_precision@1': 0.64,
 'NanoHotpotQA_cosine_precision@3': 0.3533333333333333,
 'NanoHotpotQA_cosine_precision@5': 0.23599999999999993,
 'NanoHotpotQA_cosine_precision@10': 0.128,
 'NanoHotpotQA_cosine_recall@1': 0.32,
 'NanoHotpotQA_cosine_recall@3': 0.53,
 'NanoHotpotQA_cosine_recall@5': 0.59,
 'NanoHotpotQA_cosine_recall@10': 0.64,
 'NanoHotpotQA_cosine_ndcg@10': 0.5959681682828366,
 'NanoHotpotQA_cosine_mrr@10': 0.723888888888889,
 'NanoHotpotQA_cosine_map@100': 0.5262469568756968,
 'NanoMSMARCO_cosine_accuracy@1': 0.36,
 'NanoMSMARCO_cosine_accuracy@3': 0.52,
 'NanoMSMARCO_cosine_accuracy@5': 0.58,
 'NanoMSMARCO_cosine_accuracy@10': 0.8,
 'NanoMSMARCO_cosine_precision@1': 0.36,
 'NanoMSMARCO_cosine_precision@3': 0.1733333333333333,
 'NanoMSMARCO_cosine_precision@5': 0.11599999999999999,
 'NanoMSMARCO_cosine_precision@10': 0.08,
 'NanoMSMARCO_cosine_recall@1': 0.36,
 'NanoMSMARCO_cosine_recall@3': 0.52,
 'NanoMSMARCO_cosine_recall@5': 0.58,
 'NanoMSMARCO_cosine_recall@10': 0.8,
 'NanoMSMARCO_cosine_ndcg@10': 0.5539831330912274,
 'NanoMSMARCO_cosine_mrr@10': 0.47960317460317464,
 'NanoMSMARCO_cosine_map@100': 0.4907628900864195,
 'NanoNFCorpus_cosine_accuracy@1': 0.42,
 'NanoNFCorpus_cosine_accuracy@3': 0.56,
 'NanoNFCorpus_cosine_accuracy@5': 0.6,
 'NanoNFCorpus_cosine_accuracy@10': 0.7,
 'NanoNFCorpus_cosine_precision@1': 0.42,
 'NanoNFCorpus_cosine_precision@3': 0.3466666666666666,
 'NanoNFCorpus_cosine_precision@5': 0.32800000000000007,
 'NanoNFCorpus_cosine_precision@10': 0.286,
 'NanoNFCorpus_cosine_recall@1': 0.03391318439564492,
 'NanoNFCorpus_cosine_recall@3': 0.06311668492872162,
 'NanoNFCorpus_cosine_recall@5': 0.08191277059586696,
 'NanoNFCorpus_cosine_recall@10': 0.13476845853527392,
 'NanoNFCorpus_cosine_ndcg@10': 0.3322933792371396,
 'NanoNFCorpus_cosine_mrr@10': 0.4983333333333333,
 'NanoNFCorpus_cosine_map@100': 0.13985354018581944,
 'NanoNQ_cosine_accuracy@1': 0.44,
 'NanoNQ_cosine_accuracy@3': 0.64,
 'NanoNQ_cosine_accuracy@5': 0.66,
 'NanoNQ_cosine_accuracy@10': 0.76,
 'NanoNQ_cosine_precision@1': 0.44,
 'NanoNQ_cosine_precision@3': 0.22,
 'NanoNQ_cosine_precision@5': 0.14,
 'NanoNQ_cosine_precision@10': 0.08199999999999999,
 'NanoNQ_cosine_recall@1': 0.42,
 'NanoNQ_cosine_recall@3': 0.62,
 'NanoNQ_cosine_recall@5': 0.64,
 'NanoNQ_cosine_recall@10': 0.75,
 'NanoNQ_cosine_ndcg@10': 0.5903874296113161,
 'NanoNQ_cosine_mrr@10': 0.5456349206349206,
 'NanoNQ_cosine_map@100': 0.5437440035864959,
 'NanoQuoraRetrieval_cosine_accuracy@1': 0.88,
 'NanoQuoraRetrieval_cosine_accuracy@3': 0.96,
 'NanoQuoraRetrieval_cosine_accuracy@5': 1.0,
 'NanoQuoraRetrieval_cosine_accuracy@10': 1.0,
 'NanoQuoraRetrieval_cosine_precision@1': 0.88,
 'NanoQuoraRetrieval_cosine_precision@3': 0.3933333333333333,
 'NanoQuoraRetrieval_cosine_precision@5': 0.256,
 'NanoQuoraRetrieval_cosine_precision@10': 0.13599999999999998,
 'NanoQuoraRetrieval_cosine_recall@1': 0.784,
 'NanoQuoraRetrieval_cosine_recall@3': 0.9186666666666667,
 'NanoQuoraRetrieval_cosine_recall@5': 0.976,
 'NanoQuoraRetrieval_cosine_recall@10': 0.9933333333333334,
 'NanoQuoraRetrieval_cosine_ndcg@10': 0.9367841595958026,
 'NanoQuoraRetrieval_cosine_mrr@10': 0.9246666666666666,
 'NanoQuoraRetrieval_cosine_map@100': 0.913554834054834,
 'NanoSCIDOCS_cosine_accuracy@1': 0.52,
 'NanoSCIDOCS_cosine_accuracy@3': 0.68,
 'NanoSCIDOCS_cosine_accuracy@5': 0.82,
 'NanoSCIDOCS_cosine_accuracy@10': 0.92,
 'NanoSCIDOCS_cosine_precision@1': 0.52,
 'NanoSCIDOCS_cosine_precision@3': 0.3933333333333333,
 'NanoSCIDOCS_cosine_precision@5': 0.33599999999999997,
 'NanoSCIDOCS_cosine_precision@10': 0.21600000000000003,
 'NanoSCIDOCS_cosine_recall@1': 0.10966666666666666,
 'NanoSCIDOCS_cosine_recall@3': 0.24466666666666664,
 'NanoSCIDOCS_cosine_recall@5': 0.34566666666666657,
 'NanoSCIDOCS_cosine_recall@10': 0.44266666666666665,
 'NanoSCIDOCS_cosine_ndcg@10': 0.4328110226758414,
 'NanoSCIDOCS_cosine_mrr@10': 0.6317222222222222,
 'NanoSCIDOCS_cosine_map@100': 0.34997841607847063,
 'NanoArguAna_cosine_accuracy@1': 0.2,
 'NanoArguAna_cosine_accuracy@3': 0.56,
 'NanoArguAna_cosine_accuracy@5': 0.76,
 'NanoArguAna_cosine_accuracy@10': 0.92,
 'NanoArguAna_cosine_precision@1': 0.2,
 'NanoArguAna_cosine_precision@3': 0.18666666666666668,
 'NanoArguAna_cosine_precision@5': 0.15200000000000002,
 'NanoArguAna_cosine_precision@10': 0.092,
 'NanoArguAna_cosine_recall@1': 0.2,
 'NanoArguAna_cosine_recall@3': 0.56,
 'NanoArguAna_cosine_recall@5': 0.76,
 'NanoArguAna_cosine_recall@10': 0.92,
 'NanoArguAna_cosine_ndcg@10': 0.5499071039525992,
 'NanoArguAna_cosine_mrr@10': 0.43229365079365073,
 'NanoArguAna_cosine_map@100': 0.43523820792684886,
 'NanoSciFact_cosine_accuracy@1': 0.6,
 'NanoSciFact_cosine_accuracy@3': 0.72,
 'NanoSciFact_cosine_accuracy@5': 0.8,
 'NanoSciFact_cosine_accuracy@10': 0.88,
 'NanoSciFact_cosine_precision@1': 0.6,
 'NanoSciFact_cosine_precision@3': 0.25333333333333335,
 'NanoSciFact_cosine_precision@5': 0.18,
 'NanoSciFact_cosine_precision@10': 0.09799999999999999,
 'NanoSciFact_cosine_recall@1': 0.58,
 'NanoSciFact_cosine_recall@3': 0.7,
 'NanoSciFact_cosine_recall@5': 0.8,
 'NanoSciFact_cosine_recall@10': 0.87,
 'NanoSciFact_cosine_ndcg@10': 0.7265348054031264,
 'NanoSciFact_cosine_mrr@10': 0.6841031746031746,
 'NanoSciFact_cosine_map@100': 0.6810233866101422,
 'NanoTouche2020_cosine_accuracy@1': 0.5102040816326531,
 'NanoTouche2020_cosine_accuracy@3': 0.8367346938775511,
 'NanoTouche2020_cosine_accuracy@5': 0.9183673469387755,
 'NanoTouche2020_cosine_accuracy@10': 0.9387755102040817,
 'NanoTouche2020_cosine_precision@1': 0.5102040816326531,
 'NanoTouche2020_cosine_precision@3': 0.5374149659863945,
 'NanoTouche2020_cosine_precision@5': 0.5061224489795918,
 'NanoTouche2020_cosine_precision@10': 0.43265306122448977,
 'NanoTouche2020_cosine_recall@1': 0.03546508562664911,
 'NanoTouche2020_cosine_recall@3': 0.11189238805791148,
 'NanoTouche2020_cosine_recall@5': 0.1673503566176574,
 'NanoTouche2020_cosine_recall@10': 0.2818808841266296,
 'NanoTouche2020_cosine_ndcg@10': 0.47479704449085264,
 'NanoTouche2020_cosine_mrr@10': 0.6714285714285714,
 'NanoTouche2020_cosine_map@100': 0.3438320372291555,
 'NanoBEIR_mean_cosine_accuracy@1': 0.5130926216640502,
 'NanoBEIR_mean_cosine_accuracy@3': 0.6997488226059654,
 'NanoBEIR_mean_cosine_accuracy@5': 0.7737205651491367,
 'NanoBEIR_mean_cosine_accuracy@10': 0.8583673469387756,
 'NanoBEIR_mean_cosine_precision@1': 0.5130926216640502,
 'NanoBEIR_mean_cosine_precision@3': 0.31928833071690216,
 'NanoBEIR_mean_cosine_precision@5': 0.2540094191522763,
 'NanoBEIR_mean_cosine_precision@10': 0.1777425431711146,
 'NanoBEIR_mean_cosine_recall@1': 0.302305611570001,
 'NanoBEIR_mean_cosine_recall@3': 0.4504361065646467,
 'NanoBEIR_mean_cosine_recall@5': 0.5234643876869758,
 'NanoBEIR_mean_cosine_recall@10': 0.6156896557033196,
 'NanoBEIR_mean_cosine_ndcg@10': 0.5623178109936842,
 'NanoBEIR_mean_cosine_mrr@10': 0.6232673992673993,
 'NanoBEIR_mean_cosine_map@100': 0.47729093279415025}
```

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->