--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.78 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7136 - Accuracy: 0.78 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1794 | 1.0 | 112 | 2.1111 | 0.29 | | 1.8527 | 2.0 | 225 | 1.7586 | 0.33 | | 1.4409 | 3.0 | 337 | 1.4728 | 0.48 | | 1.4484 | 4.0 | 450 | 1.3092 | 0.59 | | 1.409 | 5.0 | 562 | 1.1073 | 0.68 | | 1.0274 | 6.0 | 675 | 1.1107 | 0.67 | | 1.0141 | 7.0 | 787 | 0.9898 | 0.7 | | 0.8946 | 8.0 | 900 | 0.9540 | 0.68 | | 1.0337 | 9.0 | 1012 | 0.8722 | 0.72 | | 0.8065 | 10.0 | 1125 | 0.8196 | 0.74 | | 1.0335 | 11.0 | 1237 | 0.7891 | 0.75 | | 0.7712 | 12.0 | 1350 | 0.7298 | 0.78 | | 0.7041 | 13.0 | 1462 | 0.7240 | 0.8 | | 0.7287 | 14.0 | 1575 | 0.7206 | 0.78 | | 0.9821 | 14.93 | 1680 | 0.7136 | 0.78 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3