--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.91 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3539 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 18 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2281 | 1.0 | 112 | 2.1128 | 0.26 | | 1.7082 | 2.0 | 225 | 1.6252 | 0.52 | | 1.267 | 3.0 | 337 | 1.3100 | 0.54 | | 1.1791 | 4.0 | 450 | 1.0496 | 0.71 | | 1.1765 | 5.0 | 562 | 0.8928 | 0.74 | | 0.5714 | 6.0 | 675 | 0.8298 | 0.77 | | 0.4869 | 7.0 | 787 | 0.7145 | 0.79 | | 0.4967 | 8.0 | 900 | 0.6990 | 0.82 | | 0.8314 | 9.0 | 1012 | 0.5657 | 0.83 | | 0.4633 | 10.0 | 1125 | 0.4589 | 0.89 | | 0.5547 | 11.0 | 1237 | 0.4919 | 0.86 | | 0.4827 | 12.0 | 1350 | 0.4069 | 0.92 | | 0.324 | 13.0 | 1462 | 0.4634 | 0.87 | | 0.5224 | 14.0 | 1575 | 0.4419 | 0.86 | | 0.1873 | 15.0 | 1687 | 0.3988 | 0.89 | | 0.2852 | 16.0 | 1800 | 0.3788 | 0.9 | | 0.3169 | 17.0 | 1912 | 0.3526 | 0.89 | | 0.4491 | 17.92 | 2016 | 0.3539 | 0.91 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3