NiharMandahas
commited on
Create fraud_detection_pipeline.py
Browse files- fraud_detection_pipeline.py +58 -0
fraud_detection_pipeline.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Pipeline
|
2 |
+
import numpy as np
|
3 |
+
import joblib
|
4 |
+
from typing import Dict, List, Union
|
5 |
+
|
6 |
+
class FraudDetectionPipeline(Pipeline):
|
7 |
+
def __init__(self):
|
8 |
+
super().__init__()
|
9 |
+
# Load the model and scaler
|
10 |
+
self.model = joblib.load("random_forest_model.joblib")
|
11 |
+
self.scaler = joblib.load("rf_scaler.joblib")
|
12 |
+
|
13 |
+
def preprocess(self, features: Dict[str, Union[int, float]]) -> np.ndarray:
|
14 |
+
"""
|
15 |
+
Preprocess the input features
|
16 |
+
Expected features:
|
17 |
+
- account_age: int (months)
|
18 |
+
- cred_changes_freq: float (per year)
|
19 |
+
- return_order_ratio: float
|
20 |
+
- vpn_usage: int (0 or 1)
|
21 |
+
- credit_score: int
|
22 |
+
"""
|
23 |
+
# Convert input to correct format
|
24 |
+
input_data = np.array([[
|
25 |
+
features['account_age'],
|
26 |
+
features['cred_changes_freq'],
|
27 |
+
features['return_order_ratio'],
|
28 |
+
features['vpn_usage'],
|
29 |
+
features['credit_score']
|
30 |
+
]])
|
31 |
+
|
32 |
+
# Scale the features
|
33 |
+
scaled_input = self.scaler.transform(input_data)
|
34 |
+
return scaled_input
|
35 |
+
|
36 |
+
def _forward(self, features: Dict[str, Union[int, float]]) -> Dict[str, Union[str, float]]:
|
37 |
+
"""
|
38 |
+
Make prediction using the model
|
39 |
+
"""
|
40 |
+
# Preprocess
|
41 |
+
scaled_input = self.preprocess(features)
|
42 |
+
|
43 |
+
# Get prediction and probability
|
44 |
+
prediction = self.model.predict(scaled_input)[0]
|
45 |
+
probabilities = self.model.predict_proba(scaled_input)[0]
|
46 |
+
|
47 |
+
# Return prediction and confidence
|
48 |
+
return {
|
49 |
+
"prediction": "Fraud" if prediction == 1 else "Not Fraud",
|
50 |
+
"confidence": float(probabilities[prediction]),
|
51 |
+
"fraud_probability": float(probabilities[1])
|
52 |
+
}
|
53 |
+
|
54 |
+
def postprocess(self, model_outputs):
|
55 |
+
return model_outputs
|
56 |
+
|
57 |
+
def load_pipeline():
|
58 |
+
return FraudDetectionPipeline()
|