--- tags: - fraud-detection - random-forest - sklearn library_name: sklearn pipeline_tag: tabular-classification --- # Random Forest Fraud Detection Model This model uses Random Forest classification to detect potential fraud based on various account and transaction features. ## Model Description - **Input Features:** - Account Age (months) - Frequency of credential changes (per year) - Return to Order ratio - VPN/Temp Mail usage (binary) - Credit Score - **Output:** Binary classification (Fraud/Not Fraud) - **Type:** Random Forest Classifier ## Usage ```python import joblib import numpy as np # Load model and scaler model = joblib.load('random_forest_model.joblib') scaler = joblib.load('rf_scaler.joblib') # Prepare input (example) input_data = np.array([[25, 0.5, 0.4, 0, 800]]) # Scale input scaled_input = scaler.transform(input_data) # Get prediction prediction = model.predict(scaled_input) probability = model.predict_proba(scaled_input) ``` ## Limitations and Bias This model should be used as part of a larger fraud detection system and not in isolation.