NikitaBaramiia
commited on
Commit
·
ff25352
1
Parent(s):
1016ac7
Upload PPO LunarLander-v2 trained agent (new version)
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-2.zip +3 -0
- ppo-LunarLander-v2-2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-2/data +94 -0
- ppo-LunarLander-v2-2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-2/policy.pth +3 -0
- ppo-LunarLander-v2-2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 264.77 +/- 21.94
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f85361a48c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f85361a4950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f85361a49e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f85361a4a70>", "_build": "<function ActorCriticPolicy._build at 0x7f85361a4b00>", "forward": "<function ActorCriticPolicy.forward at 0x7f85361a4b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f85361a4c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f85361a4cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f85361a4d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f85361a4dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f85361a4e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f85361f56c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1665874815201364340, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbCgz3hZIO6uII6tnN6VLEVcEc7xZlnNQAAgD8AAIA/ZjkePQpdbrve9Kw8vO7mPD74vzzV9sG9AACAPwAAgD8z3oE8qfpcvBZpQDyQY5Q8fvy/PZ2NcL0AAIA/AACAP4Cjsj1cu2W6wyhYtdV9hzLjJmk5Nn2BNAAAgD8AAIA/RocSPsmoOz4aBTm+FCg2vhuiT703yJ+8AAAAAAAAAABmJp+8Pp2oP9+EJb4NyuC+xff/vOqqNr0AAAAAAAAAABoBHz2Pdg+66zqEteuuwa/gOW+6fQa9NAAAgD8AAIA/mpUovl8+rj+V6b6+FVfmvtBrzr2Eph2+AAAAAAAAAAAAHW+9QxGtP6LuAr/UHrO+AJOpvD2aDr4AAAAAAAAAADOfjb34SqE+psLWPgTYfb7Fq7Y9YyOhPQAAAAAAAAAAWkP/PQo1ALuNuJm9CugBPOLFiD3AhO+9AACAPwAAgD/Nfjy9UZBFP5MBKr0gfsO+Dmk9vaLkET0AAAAAAAAAAM07uLx75qe6jcVhNVwBlTAvEmS6/u2WtAAAgD8AAIA/mskCu6QATbnWhP88NAsjvlhQSDz+tEK9AAAAAAAAAABmY8k8QxO0P/ZlgT6yrgG+4uQZPA3LyT0AAAAAAAAAAJpx0Tt0zrM/w7olP0CwjL4hd/K7KykWvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIP6n26Xgdb0CUhpRSlIwBbJRNDwGMAXSUR0CwOlzB68g7dX2UKGgGaAloD0MICoDxDBq8bkCUhpRSlGgVTQYBaBZHQLA6cb+Lm6p1fZQoaAZoCWgPQwgiT5KumYpHQJSGlFKUaBVLvWgWR0CwOt2LpA2RdX2UKGgGaAloD0MISBXFqywBckCUhpRSlGgVTRMBaBZHQLA67Za3Zwp1fZQoaAZoCWgPQwjJ5T+k30JwQJSGlFKUaBVNHAFoFkdAsDsYarFOwnV9lChoBmgJaA9DCLYQ5KCEh29AlIaUUpRoFUv4aBZHQLA7LFsYVIt1fZQoaAZoCWgPQwhblNkgEz1yQJSGlFKUaBVNIwFoFkdAsDtd9BrvcHV9lChoBmgJaA9DCD/EBgunRXJAlIaUUpRoFU0oAWgWR0CwO5ID9wWFdX2UKGgGaAloD0MIT6+UZYi4ckCUhpRSlGgVTQYBaBZHQLA7mfRu0kZ1fZQoaAZoCWgPQwiLqIk+X3xxQJSGlFKUaBVNBwFoFkdAsDvt2ki2UnV9lChoBmgJaA9DCJKzsKcdKERAlIaUUpRoFUvPaBZHQLA7+RpDeCV1fZQoaAZoCWgPQwgFFytqsEZwQJSGlFKUaBVNRwFoFkdAsDwjWVeKK3V9lChoBmgJaA9DCITYmUIng3FAlIaUUpRoFU03AWgWR0CwPC7n9vS/dX2UKGgGaAloD0MIpBe1+9XZbECUhpRSlGgVTS4BaBZHQLA8QXtjTa11fZQoaAZoCWgPQwhDOGbZ03lwQJSGlFKUaBVNHwFoFkdAsDyXVoYek3V9lChoBmgJaA9DCI5cN6V8tHFAlIaUUpRoFU0VAWgWR0CwPJlCw8nvdX2UKGgGaAloD0MIIm5OJYP8ckCUhpRSlGgVS/xoFkdAsDzpRUFSsXV9lChoBmgJaA9DCDlGskeoI29AlIaUUpRoFUv9aBZHQLA9MPfsNUh1fZQoaAZoCWgPQwhDjxg9N2JwQJSGlFKUaBVNJwFoFkdAsD03jCHh0nV9lChoBmgJaA9DCNl78UX7JXBAlIaUUpRoFU0VAWgWR0CwPU8gyM1kdX2UKGgGaAloD0MIDLCPTl3WbkCUhpRSlGgVS/NoFkdAsD2JHFxXGXV9lChoBmgJaA9DCENznUZa33JAlIaUUpRoFU0SAWgWR0CwPZThgmZ3dX2UKGgGaAloD0MIRRDn4YRtcUCUhpRSlGgVTQUBaBZHQLA9uh1DBuZ1fZQoaAZoCWgPQwiQhegQOMo/QJSGlFKUaBVL0GgWR0CwPfl1nuiOdX2UKGgGaAloD0MIW3o01ZMHb0CUhpRSlGgVTQsBaBZHQLA+HeYUnG91fZQoaAZoCWgPQwh6xyk6UtRwQJSGlFKUaBVL82gWR0CwPjETg2qDdX2UKGgGaAloD0MIV+vE5ThGcUCUhpRSlGgVTRMBaBZHQLA+OyR0U491fZQoaAZoCWgPQwhMT1jigQBwQJSGlFKUaBVNAAFoFkdAsD4/TTfBN3V9lChoBmgJaA9DCPGeA8sRRm5AlIaUUpRoFU2NA2gWR0CwPqi+10DEdX2UKGgGaAloD0MIOBH92joac0CUhpRSlGgVTQUBaBZHQLA+udNnGsF1fZQoaAZoCWgPQwjyejApPi9TQJSGlFKUaBVL2GgWR0CwPve3lS0jdX2UKGgGaAloD0MICKuxhHWLcUCUhpRSlGgVTTABaBZHQLA/FGW2PT51fZQoaAZoCWgPQwjPL0rQH4dwQJSGlFKUaBVL/WgWR0CwP2EaZQYUdX2UKGgGaAloD0MIizbHuU2VcECUhpRSlGgVTT4BaBZHQLA/jI5YHPh1fZQoaAZoCWgPQwjrNqj91pNTQJSGlFKUaBVLq2gWR0CwP6MlXzUadX2UKGgGaAloD0MIGttrQa9vcUCUhpRSlGgVTS8BaBZHQLA/srZrYXh1fZQoaAZoCWgPQwhuisdFNV9uQJSGlFKUaBVNDQFoFkdAsD/MYk3S8nV9lChoBmgJaA9DCB8PfXdrXnFAlIaUUpRoFU0SAWgWR0CwP8ydWhh6dX2UKGgGaAloD0MIzQUujzWybkCUhpRSlGgVTREBaBZHQLA/90pVjqh1fZQoaAZoCWgPQwgBF2TL8s9HQJSGlFKUaBVL2GgWR0CwP/xr30wrdX2UKGgGaAloD0MI7PtwkBBfVUCUhpRSlGgVTegDaBZHQLBAEMNMGot1fZQoaAZoCWgPQwhQptHk4rFuQJSGlFKUaBVNAwFoFkdAsEAtwqAjIXV9lChoBmgJaA9DCMZpiCr8hHFAlIaUUpRoFU0lAWgWR0CwQ2JLVWjodX2UKGgGaAloD0MIucK7XMS6cUCUhpRSlGgVTSMBaBZHQLBDi3pfQa91fZQoaAZoCWgPQwjeV+VC5ZdwQJSGlFKUaBVL7WgWR0CwQ5tLDhtMdX2UKGgGaAloD0MIKZXwhF7Sb0CUhpRSlGgVTRQBaBZHQLBD7LmITGp1fZQoaAZoCWgPQwjAkqtY/DBwQJSGlFKUaBVNBQFoFkdAsEQKFoL5RHV9lChoBmgJaA9DCBVUVP3KQW9AlIaUUpRoFU0EAWgWR0CwRGjKgZjydX2UKGgGaAloD0MIKhvWVNZacECUhpRSlGgVS/NoFkdAsESDRG+bmXV9lChoBmgJaA9DCAx07Qso1XFAlIaUUpRoFU1PAWgWR0CwRMMzQ/ordX2UKGgGaAloD0MIYeKPog4Ec0CUhpRSlGgVTQoBaBZHQLBE4m4Ajpt1fZQoaAZoCWgPQwgPf03W6ClwQJSGlFKUaBVNIAFoFkdAsET52C/XXnV9lChoBmgJaA9DCNCAejNq+3BAlIaUUpRoFU0CAWgWR0CwRQEVvddndX2UKGgGaAloD0MIlbn5RnQRb0CUhpRSlGgVTRsBaBZHQLBFDC6pYLd1fZQoaAZoCWgPQwj6RQn6SxxyQJSGlFKUaBVNHwFoFkdAsEVJTm4iHXV9lChoBmgJaA9DCGxAhLhyOG9AlIaUUpRoFU0BAWgWR0CwRW6raM72dX2UKGgGaAloD0MIZw3eV6UHckCUhpRSlGgVTSwBaBZHQLBFgD/EOy51fZQoaAZoCWgPQwhuiVxwRppwQJSGlFKUaBVNbgFoFkdAsEWEht+CsnV9lChoBmgJaA9DCGglrfgGt21AlIaUUpRoFUvraBZHQLBFhlf7aZh1fZQoaAZoCWgPQwiJQsu6/zBwQJSGlFKUaBVNIwFoFkdAsEWQPRRdhXV9lChoBmgJaA9DCKGjVS0p+nBAlIaUUpRoFU0qAWgWR0CwRdzuOS4fdX2UKGgGaAloD0MIUAEwnkE8bUCUhpRSlGgVS/poFkdAsEXp4SpR43V9lChoBmgJaA9DCE7TZwccq3BAlIaUUpRoFUv6aBZHQLBGAX2M85l1fZQoaAZoCWgPQwjyJVRwuPBxQJSGlFKUaBVNDgFoFkdAsEaFPGhmG3V9lChoBmgJaA9DCPlp3Juf7HJAlIaUUpRoFU0lAWgWR0CwRte9SMtLdX2UKGgGaAloD0MIxF4oYPsEckCUhpRSlGgVS/ZoFkdAsEbkRf4REnV9lChoBmgJaA9DCB9LH7qgaXFAlIaUUpRoFU0OAWgWR0CwRua1TisGdX2UKGgGaAloD0MISfYINQOdcUCUhpRSlGgVS/xoFkdAsEb4IjW07nV9lChoBmgJaA9DCPQau0Q1C3NAlIaUUpRoFU0PAWgWR0CwRwSjDbaidX2UKGgGaAloD0MICwxZ3Wp7cECUhpRSlGgVTSEBaBZHQLBHTuejEeh1fZQoaAZoCWgPQwjgu80bJ3NxQJSGlFKUaBVNCgFoFkdAsEdZz90ihXV9lChoBmgJaA9DCBjt8UK6FXFAlIaUUpRoFUv4aBZHQLBHa1SwW311fZQoaAZoCWgPQwgM5US7SvdwQJSGlFKUaBVL+WgWR0CwR297WuoxdX2UKGgGaAloD0MIzCVV201vcUCUhpRSlGgVTQYBaBZHQLBHcubqhUR1fZQoaAZoCWgPQwgZda29TyluQJSGlFKUaBVNHQFoFkdAsEejkRzzVnV9lChoBmgJaA9DCMQ+ARQjKHJAlIaUUpRoFU0YAWgWR0CwR6mois4ldX2UKGgGaAloD0MIpZ9wditWckCUhpRSlGgVTQoBaBZHQLBH6pGnXNF1fZQoaAZoCWgPQwjE6o8wzDVxQJSGlFKUaBVNFwFoFkdAsEgcrJ8v3HV9lChoBmgJaA9DCB2u1R72AHBAlIaUUpRoFU05AWgWR0CwSDDVhCtzdX2UKGgGaAloD0MIhIQoX9AUckCUhpRSlGgVTSoBaBZHQLBIyrgOz6d1fZQoaAZoCWgPQwiCUx9IXmBsQJSGlFKUaBVNEgFoFkdAsEjy2VmjCnV9lChoBmgJaA9DCFwf1hs1Mm9AlIaUUpRoFU0JAWgWR0CwSP6fFrEcdX2UKGgGaAloD0MI7L5jeGxOcECUhpRSlGgVTRgBaBZHQLBI/t6X0Gx1fZQoaAZoCWgPQwgVqwZh7iBwQJSGlFKUaBVNHgFoFkdAsEkBA7gbZXV9lChoBmgJaA9DCFw5e2c09HFAlIaUUpRoFU0gAWgWR0CwSSGZ7XxwdX2UKGgGaAloD0MIdZDXg0k7Q0CUhpRSlGgVS8poFkdAsEknrv9cbHV9lChoBmgJaA9DCGMl5lnJWnJAlIaUUpRoFUvwaBZHQLBJMLP2PDJ1fZQoaAZoCWgPQwhwmGiQAnxvQJSGlFKUaBVL/mgWR0CwSURplBhQdX2UKGgGaAloD0MIhSf0+hOGb0CUhpRSlGgVTQsBaBZHQLBJRB2OhkB1fZQoaAZoCWgPQwjICRNGc1FxQJSGlFKUaBVNGgFoFkdAsEljMINVinV9lChoBmgJaA9DCOXxtPyAsHFAlIaUUpRoFU0VAWgWR0CwSW5amoBJdX2UKGgGaAloD0MIqIx/n3ERPkCUhpRSlGgVS8FoFkdAsEmMsI3R5XV9lChoBmgJaA9DCJaTUPoCRnFAlIaUUpRoFU0oAWgWR0CwScC7f51vdX2UKGgGaAloD0MIbatZZ7yTckCUhpRSlGgVTQ8BaBZHQLBJ3o371qZ1fZQoaAZoCWgPQwigVPt0vD5xQJSGlFKUaBVNLQFoFkdAsEpi4d6syXV9lChoBmgJaA9DCPThWYLM1nFAlIaUUpRoFUvsaBZHQLBKqoxpL291fZQoaAZoCWgPQwgJ3SVxVjJuQJSGlFKUaBVL+mgWR0CwSvUeZG8VdX2UKGgGaAloD0MIhq+vdWmZcUCUhpRSlGgVTQsBaBZHQLBK9VFQVKx1fZQoaAZoCWgPQwiga19Ar+NwQJSGlFKUaBVNEgFoFkdAsEr6PvKEFnV9lChoBmgJaA9DCKWCiqpfZnBAlIaUUpRoFU0rAWgWR0CwSw3Him2tdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 155, "n_steps": 1024, "gamma": 0.9995, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fb2ac6d758727910c66d4175dd97ce46d10782ef5d3592e21814587c8cfad59
|
3 |
+
size 147118
|
ppo-LunarLander-v2-2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2-2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f85361a48c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f85361a4950>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f85361a49e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f85361a4a70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f85361a4b00>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f85361a4b90>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f85361a4c20>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f85361a4cb0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f85361a4d40>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f85361a4dd0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f85361a4e60>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f85361f56c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1665874815201364340,
|
51 |
+
"learning_rate": 0.001,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbCgz3hZIO6uII6tnN6VLEVcEc7xZlnNQAAgD8AAIA/ZjkePQpdbrve9Kw8vO7mPD74vzzV9sG9AACAPwAAgD8z3oE8qfpcvBZpQDyQY5Q8fvy/PZ2NcL0AAIA/AACAP4Cjsj1cu2W6wyhYtdV9hzLjJmk5Nn2BNAAAgD8AAIA/RocSPsmoOz4aBTm+FCg2vhuiT703yJ+8AAAAAAAAAABmJp+8Pp2oP9+EJb4NyuC+xff/vOqqNr0AAAAAAAAAABoBHz2Pdg+66zqEteuuwa/gOW+6fQa9NAAAgD8AAIA/mpUovl8+rj+V6b6+FVfmvtBrzr2Eph2+AAAAAAAAAAAAHW+9QxGtP6LuAr/UHrO+AJOpvD2aDr4AAAAAAAAAADOfjb34SqE+psLWPgTYfb7Fq7Y9YyOhPQAAAAAAAAAAWkP/PQo1ALuNuJm9CugBPOLFiD3AhO+9AACAPwAAgD/Nfjy9UZBFP5MBKr0gfsO+Dmk9vaLkET0AAAAAAAAAAM07uLx75qe6jcVhNVwBlTAvEmS6/u2WtAAAgD8AAIA/mskCu6QATbnWhP88NAsjvlhQSDz+tEK9AAAAAAAAAABmY8k8QxO0P/ZlgT6yrgG+4uQZPA3LyT0AAAAAAAAAAJpx0Tt0zrM/w7olP0CwjL4hd/K7KykWvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVZhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIP6n26Xgdb0CUhpRSlIwBbJRNDwGMAXSUR0CwOlzB68g7dX2UKGgGaAloD0MICoDxDBq8bkCUhpRSlGgVTQYBaBZHQLA6cb+Lm6p1fZQoaAZoCWgPQwgiT5KumYpHQJSGlFKUaBVLvWgWR0CwOt2LpA2RdX2UKGgGaAloD0MISBXFqywBckCUhpRSlGgVTRMBaBZHQLA67Za3Zwp1fZQoaAZoCWgPQwjJ5T+k30JwQJSGlFKUaBVNHAFoFkdAsDsYarFOwnV9lChoBmgJaA9DCLYQ5KCEh29AlIaUUpRoFUv4aBZHQLA7LFsYVIt1fZQoaAZoCWgPQwhblNkgEz1yQJSGlFKUaBVNIwFoFkdAsDtd9BrvcHV9lChoBmgJaA9DCD/EBgunRXJAlIaUUpRoFU0oAWgWR0CwO5ID9wWFdX2UKGgGaAloD0MIT6+UZYi4ckCUhpRSlGgVTQYBaBZHQLA7mfRu0kZ1fZQoaAZoCWgPQwiLqIk+X3xxQJSGlFKUaBVNBwFoFkdAsDvt2ki2UnV9lChoBmgJaA9DCJKzsKcdKERAlIaUUpRoFUvPaBZHQLA7+RpDeCV1fZQoaAZoCWgPQwgFFytqsEZwQJSGlFKUaBVNRwFoFkdAsDwjWVeKK3V9lChoBmgJaA9DCITYmUIng3FAlIaUUpRoFU03AWgWR0CwPC7n9vS/dX2UKGgGaAloD0MIpBe1+9XZbECUhpRSlGgVTS4BaBZHQLA8QXtjTa11fZQoaAZoCWgPQwhDOGbZ03lwQJSGlFKUaBVNHwFoFkdAsDyXVoYek3V9lChoBmgJaA9DCI5cN6V8tHFAlIaUUpRoFU0VAWgWR0CwPJlCw8nvdX2UKGgGaAloD0MIIm5OJYP8ckCUhpRSlGgVS/xoFkdAsDzpRUFSsXV9lChoBmgJaA9DCDlGskeoI29AlIaUUpRoFUv9aBZHQLA9MPfsNUh1fZQoaAZoCWgPQwhDjxg9N2JwQJSGlFKUaBVNJwFoFkdAsD03jCHh0nV9lChoBmgJaA9DCNl78UX7JXBAlIaUUpRoFU0VAWgWR0CwPU8gyM1kdX2UKGgGaAloD0MIDLCPTl3WbkCUhpRSlGgVS/NoFkdAsD2JHFxXGXV9lChoBmgJaA9DCENznUZa33JAlIaUUpRoFU0SAWgWR0CwPZThgmZ3dX2UKGgGaAloD0MIRRDn4YRtcUCUhpRSlGgVTQUBaBZHQLA9uh1DBuZ1fZQoaAZoCWgPQwiQhegQOMo/QJSGlFKUaBVL0GgWR0CwPfl1nuiOdX2UKGgGaAloD0MIW3o01ZMHb0CUhpRSlGgVTQsBaBZHQLA+HeYUnG91fZQoaAZoCWgPQwh6xyk6UtRwQJSGlFKUaBVL82gWR0CwPjETg2qDdX2UKGgGaAloD0MIV+vE5ThGcUCUhpRSlGgVTRMBaBZHQLA+OyR0U491fZQoaAZoCWgPQwhMT1jigQBwQJSGlFKUaBVNAAFoFkdAsD4/TTfBN3V9lChoBmgJaA9DCPGeA8sRRm5AlIaUUpRoFU2NA2gWR0CwPqi+10DEdX2UKGgGaAloD0MIOBH92joac0CUhpRSlGgVTQUBaBZHQLA+udNnGsF1fZQoaAZoCWgPQwjyejApPi9TQJSGlFKUaBVL2GgWR0CwPve3lS0jdX2UKGgGaAloD0MICKuxhHWLcUCUhpRSlGgVTTABaBZHQLA/FGW2PT51fZQoaAZoCWgPQwjPL0rQH4dwQJSGlFKUaBVL/WgWR0CwP2EaZQYUdX2UKGgGaAloD0MIizbHuU2VcECUhpRSlGgVTT4BaBZHQLA/jI5YHPh1fZQoaAZoCWgPQwjrNqj91pNTQJSGlFKUaBVLq2gWR0CwP6MlXzUadX2UKGgGaAloD0MIGttrQa9vcUCUhpRSlGgVTS8BaBZHQLA/srZrYXh1fZQoaAZoCWgPQwhuisdFNV9uQJSGlFKUaBVNDQFoFkdAsD/MYk3S8nV9lChoBmgJaA9DCB8PfXdrXnFAlIaUUpRoFU0SAWgWR0CwP8ydWhh6dX2UKGgGaAloD0MIzQUujzWybkCUhpRSlGgVTREBaBZHQLA/90pVjqh1fZQoaAZoCWgPQwgBF2TL8s9HQJSGlFKUaBVL2GgWR0CwP/xr30wrdX2UKGgGaAloD0MI7PtwkBBfVUCUhpRSlGgVTegDaBZHQLBAEMNMGot1fZQoaAZoCWgPQwhQptHk4rFuQJSGlFKUaBVNAwFoFkdAsEAtwqAjIXV9lChoBmgJaA9DCMZpiCr8hHFAlIaUUpRoFU0lAWgWR0CwQ2JLVWjodX2UKGgGaAloD0MIucK7XMS6cUCUhpRSlGgVTSMBaBZHQLBDi3pfQa91fZQoaAZoCWgPQwjeV+VC5ZdwQJSGlFKUaBVL7WgWR0CwQ5tLDhtMdX2UKGgGaAloD0MIKZXwhF7Sb0CUhpRSlGgVTRQBaBZHQLBD7LmITGp1fZQoaAZoCWgPQwjAkqtY/DBwQJSGlFKUaBVNBQFoFkdAsEQKFoL5RHV9lChoBmgJaA9DCBVUVP3KQW9AlIaUUpRoFU0EAWgWR0CwRGjKgZjydX2UKGgGaAloD0MIKhvWVNZacECUhpRSlGgVS/NoFkdAsESDRG+bmXV9lChoBmgJaA9DCAx07Qso1XFAlIaUUpRoFU1PAWgWR0CwRMMzQ/ordX2UKGgGaAloD0MIYeKPog4Ec0CUhpRSlGgVTQoBaBZHQLBE4m4Ajpt1fZQoaAZoCWgPQwgPf03W6ClwQJSGlFKUaBVNIAFoFkdAsET52C/XXnV9lChoBmgJaA9DCNCAejNq+3BAlIaUUpRoFU0CAWgWR0CwRQEVvddndX2UKGgGaAloD0MIlbn5RnQRb0CUhpRSlGgVTRsBaBZHQLBFDC6pYLd1fZQoaAZoCWgPQwj6RQn6SxxyQJSGlFKUaBVNHwFoFkdAsEVJTm4iHXV9lChoBmgJaA9DCGxAhLhyOG9AlIaUUpRoFU0BAWgWR0CwRW6raM72dX2UKGgGaAloD0MIZw3eV6UHckCUhpRSlGgVTSwBaBZHQLBFgD/EOy51fZQoaAZoCWgPQwhuiVxwRppwQJSGlFKUaBVNbgFoFkdAsEWEht+CsnV9lChoBmgJaA9DCGglrfgGt21AlIaUUpRoFUvraBZHQLBFhlf7aZh1fZQoaAZoCWgPQwiJQsu6/zBwQJSGlFKUaBVNIwFoFkdAsEWQPRRdhXV9lChoBmgJaA9DCKGjVS0p+nBAlIaUUpRoFU0qAWgWR0CwRdzuOS4fdX2UKGgGaAloD0MIUAEwnkE8bUCUhpRSlGgVS/poFkdAsEXp4SpR43V9lChoBmgJaA9DCE7TZwccq3BAlIaUUpRoFUv6aBZHQLBGAX2M85l1fZQoaAZoCWgPQwjyJVRwuPBxQJSGlFKUaBVNDgFoFkdAsEaFPGhmG3V9lChoBmgJaA9DCPlp3Juf7HJAlIaUUpRoFU0lAWgWR0CwRte9SMtLdX2UKGgGaAloD0MIxF4oYPsEckCUhpRSlGgVS/ZoFkdAsEbkRf4REnV9lChoBmgJaA9DCB9LH7qgaXFAlIaUUpRoFU0OAWgWR0CwRua1TisGdX2UKGgGaAloD0MISfYINQOdcUCUhpRSlGgVS/xoFkdAsEb4IjW07nV9lChoBmgJaA9DCPQau0Q1C3NAlIaUUpRoFU0PAWgWR0CwRwSjDbaidX2UKGgGaAloD0MICwxZ3Wp7cECUhpRSlGgVTSEBaBZHQLBHTuejEeh1fZQoaAZoCWgPQwjgu80bJ3NxQJSGlFKUaBVNCgFoFkdAsEdZz90ihXV9lChoBmgJaA9DCBjt8UK6FXFAlIaUUpRoFUv4aBZHQLBHa1SwW311fZQoaAZoCWgPQwgM5US7SvdwQJSGlFKUaBVL+WgWR0CwR297WuoxdX2UKGgGaAloD0MIzCVV201vcUCUhpRSlGgVTQYBaBZHQLBHcubqhUR1fZQoaAZoCWgPQwgZda29TyluQJSGlFKUaBVNHQFoFkdAsEejkRzzVnV9lChoBmgJaA9DCMQ+ARQjKHJAlIaUUpRoFU0YAWgWR0CwR6mois4ldX2UKGgGaAloD0MIpZ9wditWckCUhpRSlGgVTQoBaBZHQLBH6pGnXNF1fZQoaAZoCWgPQwjE6o8wzDVxQJSGlFKUaBVNFwFoFkdAsEgcrJ8v3HV9lChoBmgJaA9DCB2u1R72AHBAlIaUUpRoFU05AWgWR0CwSDDVhCtzdX2UKGgGaAloD0MIhIQoX9AUckCUhpRSlGgVTSoBaBZHQLBIyrgOz6d1fZQoaAZoCWgPQwiCUx9IXmBsQJSGlFKUaBVNEgFoFkdAsEjy2VmjCnV9lChoBmgJaA9DCFwf1hs1Mm9AlIaUUpRoFU0JAWgWR0CwSP6fFrEcdX2UKGgGaAloD0MI7L5jeGxOcECUhpRSlGgVTRgBaBZHQLBI/t6X0Gx1fZQoaAZoCWgPQwgVqwZh7iBwQJSGlFKUaBVNHgFoFkdAsEkBA7gbZXV9lChoBmgJaA9DCFw5e2c09HFAlIaUUpRoFU0gAWgWR0CwSSGZ7XxwdX2UKGgGaAloD0MIdZDXg0k7Q0CUhpRSlGgVS8poFkdAsEknrv9cbHV9lChoBmgJaA9DCGMl5lnJWnJAlIaUUpRoFUvwaBZHQLBJMLP2PDJ1fZQoaAZoCWgPQwhwmGiQAnxvQJSGlFKUaBVL/mgWR0CwSURplBhQdX2UKGgGaAloD0MIhSf0+hOGb0CUhpRSlGgVTQsBaBZHQLBJRB2OhkB1fZQoaAZoCWgPQwjICRNGc1FxQJSGlFKUaBVNGgFoFkdAsEljMINVinV9lChoBmgJaA9DCOXxtPyAsHFAlIaUUpRoFU0VAWgWR0CwSW5amoBJdX2UKGgGaAloD0MIqIx/n3ERPkCUhpRSlGgVS8FoFkdAsEmMsI3R5XV9lChoBmgJaA9DCJaTUPoCRnFAlIaUUpRoFU0oAWgWR0CwScC7f51vdX2UKGgGaAloD0MIbatZZ7yTckCUhpRSlGgVTQ8BaBZHQLBJ3o371qZ1fZQoaAZoCWgPQwigVPt0vD5xQJSGlFKUaBVNLQFoFkdAsEpi4d6syXV9lChoBmgJaA9DCPThWYLM1nFAlIaUUpRoFUvsaBZHQLBKqoxpL291fZQoaAZoCWgPQwgJ3SVxVjJuQJSGlFKUaBVL+mgWR0CwSvUeZG8VdX2UKGgGaAloD0MIhq+vdWmZcUCUhpRSlGgVTQsBaBZHQLBK9VFQVKx1fZQoaAZoCWgPQwiga19Ar+NwQJSGlFKUaBVNEgFoFkdAsEr6PvKEFnV9lChoBmgJaA9DCKWCiqpfZnBAlIaUUpRoFU0rAWgWR0CwSw3Him2tdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 155,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.9995,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 5,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f5c9518ca2a75bedc5d55905e8a91284e7e2c301e4412ce79d68d4d097fc23a
|
3 |
+
size 87865
|
ppo-LunarLander-v2-2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ce925d9ce0e68ae4a0dc212f8ba5067ea682bddbe19fd4436f54cf3328b8281
|
3 |
+
size 43201
|
ppo-LunarLander-v2-2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.14
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (239 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 264.7669336863788, "std_reward": 21.936787862708233, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-15T23:08:44.117596"}
|