NoNameFound
commited on
Commit
·
a777c83
1
Parent(s):
6fc8b22
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 273.67 +/- 25.88
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff4b223bdc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff4b223be50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff4b223bee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff4b223bf70>", "_build": "<function ActorCriticPolicy._build at 0x7ff4b21bf040>", "forward": "<function ActorCriticPolicy.forward at 0x7ff4b21bf0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff4b21bf160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff4b21bf1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff4b21bf280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff4b21bf310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff4b21bf3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff4b21bf430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff4b223a3c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676656526378084070, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb4ybynxkQ+gggjvgcFl75qN8S97uYbvQAAAAAAAAAAM5zXvZnMZT4TpNo+oxIdvjpAAj48sEQ+AAAAAAAAAADNFXa9RiHGPhFTAj0x4ba+MWedvAS/mzwAAAAAAAAAACZB5T2gK5Q/zqClPsucEL8zz1I+G9JBPgAAAAAAAAAAMyP1u/YEEbo0eT60gGwML1MYAzp34o0zAACAPwAAgD8g1Si+M2MGPyD3Cj5tIba+KrQmvfhnuD0AAAAAAAAAAGZYoTyYIZg9IHWUvYQmjr6Uqc28Ygt1vQAAAAAAAAAAmk0TvaTIb7uSnJG8yiGWPBcRqjyqaYC9AACAPwAAgD8A+KK7j7YpukJqeTZN9JoxHouhunrHlLUAAIA/AACAP5qJhLsKxjK7rnaeOwWQkDz7Myi8CiN5PQAAgD8AAIA/2sbPvRqcjz+R08a+7dk7v430Tb5QJaG9AAAAAAAAAACz+zi9o6+nP6hSB7/rNSe/lhuhuz3KHb4AAAAAAAAAAADzqb3kWRM+hffnPYOBJb6CfOQ8k7givQAAAAAAAAAAgGdMPTgSnLueSJK7DHyzPKLSBr1m6JY9AACAPwAAgD+AYoG9T/9APfBL7j0CSTi+wYMcPUYcIb0AAAAAAAAAAICGNz1NvYo/7ROsPaT1Hb/ivrU9A7JuPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBi6PNeN5ckCUhpRSlIwBbJRL24wBdJRHQKZiY+yJKrd1fZQoaAZoCWgPQwh01NFxNaByQJSGlFKUaBVNFwFoFkdApmJkkrwvx3V9lChoBmgJaA9DCDIcz2fA33NAlIaUUpRoFUveaBZHQKZiiB19v0h1fZQoaAZoCWgPQwi85lWdFR5yQJSGlFKUaBVL+2gWR0CmYrolt0mudX2UKGgGaAloD0MIgLirV9FycUCUhpRSlGgVS8loFkdApmL0Iw/PgXV9lChoBmgJaA9DCDdRS3OrjG9AlIaUUpRoFUv2aBZHQKZjEgzxgAp1fZQoaAZoCWgPQwgGL/oKUj5wQJSGlFKUaBVL8mgWR0CmYxELx7RfdX2UKGgGaAloD0MI+RBUjV4wcECUhpRSlGgVTR4BaBZHQKZjIb/ffoB1fZQoaAZoCWgPQwjYnlkSoHVzQJSGlFKUaBVL32gWR0CmYys6ij+KdX2UKGgGaAloD0MIL4Zyot1BcUCUhpRSlGgVS/poFkdApmMpRTCLuXV9lChoBmgJaA9DCLPviuB/pXFAlIaUUpRoFU0IAWgWR0CmY3BW5paidX2UKGgGaAloD0MIj/tW68QyckCUhpRSlGgVS79oFkdApmOIVqN6xHV9lChoBmgJaA9DCOjbgqW6DW1AlIaUUpRoFUvdaBZHQKZj6Vkc0ch1fZQoaAZoCWgPQwgPYJFff5hxQJSGlFKUaBVLu2gWR0CmZBZksjFAdX2UKGgGaAloD0MIvFzEd6IbcUCUhpRSlGgVS+BoFkdApmRuvZAY53V9lChoBmgJaA9DCEmAmlr2E3NAlIaUUpRoFUvJaBZHQKZken6VMVV1fZQoaAZoCWgPQwjizK/mAMpuQJSGlFKUaBVL+WgWR0CmZQg2AG0NdX2UKGgGaAloD0MIritmhHekckCUhpRSlGgVTQkBaBZHQKZlFg5zYEp1fZQoaAZoCWgPQwjmrE85puBwQJSGlFKUaBVL9mgWR0CmZSYKx9ofdX2UKGgGaAloD0MIPdUhNwN9ckCUhpRSlGgVS/BoFkdApmVHXyy2QXV9lChoBmgJaA9DCAsIrYdvU3JAlIaUUpRoFUvXaBZHQKZlafdRBNV1fZQoaAZoCWgPQwhuaTUk7gx0QJSGlFKUaBVL2GgWR0CmZW7rLQokdX2UKGgGaAloD0MIUPwYc9eQcECUhpRSlGgVS/BoFkdApmWYyhzvJHV9lChoBmgJaA9DCHEDPj+M2HJAlIaUUpRoFUv5aBZHQKZlsRRMvh91fZQoaAZoCWgPQwi6Mqg2eC1xQJSGlFKUaBVNBAFoFkdApmW3G4qgAnV9lChoBmgJaA9DCPiqlQl/PnBAlIaUUpRoFUvcaBZHQKZl0SzPa+N1fZQoaAZoCWgPQwhhONcwwwVxQJSGlFKUaBVNAAFoFkdApmXUqpcX33V9lChoBmgJaA9DCK+WOzNBbW5AlIaUUpRoFUvVaBZHQKZl2hvBJqZ1fZQoaAZoCWgPQwi9baZC/GRyQJSGlFKUaBVLvWgWR0CmZh0gSvkjdX2UKGgGaAloD0MI7ZxmgXZjbkCUhpRSlGgVS+toFkdApm+63CsOonV9lChoBmgJaA9DCGKh1jSv9HNAlIaUUpRoFUvdaBZHQKZwIKJl8PZ1fZQoaAZoCWgPQwheaRmp9wZvQJSGlFKUaBVL4WgWR0CmcCDoZAIIdX2UKGgGaAloD0MI547+l+uZckCUhpRSlGgVS9loFkdApnCYCKaXr3V9lChoBmgJaA9DCIJYNnPIEnJAlIaUUpRoFUvbaBZHQKZwu5e7cwh1fZQoaAZoCWgPQwhTI/QztbpwQJSGlFKUaBVL6mgWR0CmcNmpuMuOdX2UKGgGaAloD0MINEdWflkyc0CUhpRSlGgVS9BoFkdApnDiGahHsnV9lChoBmgJaA9DCDBoIQEjAnBAlIaUUpRoFUviaBZHQKZxIMDwH7h1fZQoaAZoCWgPQwi0Oc5twrBvQJSGlFKUaBVL9mgWR0CmcTZ/0/W2dX2UKGgGaAloD0MI0ZDxKJXOcUCUhpRSlGgVS7xoFkdApnGJ6F/QSnV9lChoBmgJaA9DCMct5ufGYHFAlIaUUpRoFUvpaBZHQKZxjOZ9d/t1fZQoaAZoCWgPQwj0NctlI1hxQJSGlFKUaBVL6GgWR0CmcbGmk30gdX2UKGgGaAloD0MIDK8keS6ycECUhpRSlGgVTQQBaBZHQKZxwH4XXRR1fZQoaAZoCWgPQwir56T3jVpwQJSGlFKUaBVL9mgWR0CmcdcNH6MzdX2UKGgGaAloD0MI8uzyrU9icUCUhpRSlGgVTQgBaBZHQKZx57el9Bt1fZQoaAZoCWgPQwgw16IFaKhyQJSGlFKUaBVNAgFoFkdApnH5QxesxXV9lChoBmgJaA9DCBB5y9WPqHFAlIaUUpRoFUvTaBZHQKZyhSkTHsF1fZQoaAZoCWgPQwhATMKF/PByQJSGlFKUaBVL3mgWR0CmcqN65XlsdX2UKGgGaAloD0MIFTsah3rCc0CUhpRSlGgVTRkBaBZHQKZy2ID5j6N1fZQoaAZoCWgPQwgw2uOFtHNyQJSGlFKUaBVLtWgWR0CmcuRagVXWdX2UKGgGaAloD0MINNsV+uD9bkCUhpRSlGgVS/ZoFkdApnN14LThHnV9lChoBmgJaA9DCIxn0NA/GHFAlIaUUpRoFUvOaBZHQKZzhcbiqAB1fZQoaAZoCWgPQwgibeNPVP5UQJSGlFKUaBVLs2gWR0Cmc6DMNc4YdX2UKGgGaAloD0MIvtu8cRI7ckCUhpRSlGgVS85oFkdApnOmOGTLXHV9lChoBmgJaA9DCC/7dae7bnBAlIaUUpRoFUvxaBZHQKZzyzyjHn51fZQoaAZoCWgPQwja44V0+FZyQJSGlFKUaBVNCQFoFkdApnP2/N7jUHV9lChoBmgJaA9DCGn9LQH4THRAlIaUUpRoFUvFaBZHQKZ0GMmWt2d1fZQoaAZoCWgPQwjqr1dYcJpwQJSGlFKUaBVL12gWR0CmdC3PZ7HAdX2UKGgGaAloD0MIaCWt+IYAckCUhpRSlGgVS7doFkdApnQ+vfTCtXV9lChoBmgJaA9DCGcpWU5CwnFAlIaUUpRoFUvAaBZHQKZ0RVaOgg51fZQoaAZoCWgPQwgEjZlEvRdxQJSGlFKUaBVL1WgWR0CmdHSyUs4DdX2UKGgGaAloD0MII/lKIKXgcECUhpRSlGgVS/VoFkdApnTI3irDInV9lChoBmgJaA9DCBlwlpKlqnNAlIaUUpRoFUu3aBZHQKZ09PKMefZ1fZQoaAZoCWgPQwhqFJLManlvQJSGlFKUaBVLwWgWR0CmdYzWf9P2dX2UKGgGaAloD0MICoZzDXPEcECUhpRSlGgVS+poFkdApnXftfG+9XV9lChoBmgJaA9DCOJyvAIRxHBAlIaUUpRoFUvDaBZHQKZ2dXmNiph1fZQoaAZoCWgPQwjpKXKIuEhvQJSGlFKUaBVLxGgWR0CmdpYkE9t/dX2UKGgGaAloD0MIRNycSgaQS0CUhpRSlGgVS45oFkdApnaju2JBPnV9lChoBmgJaA9DCFH0wMfgHG1AlIaUUpRoFUvUaBZHQKZ25Wcz68B1fZQoaAZoCWgPQwgKaCJsuFdwQJSGlFKUaBVL5WgWR0CmdwVbJOnEdX2UKGgGaAloD0MI6X+5Fq1dc0CUhpRSlGgVTRQBaBZHQKZ3E10DEFZ1fZQoaAZoCWgPQwgeqb7zC45uQJSGlFKUaBVLvWgWR0CmdyxMWXTmdX2UKGgGaAloD0MIBYvDmR+fcECUhpRSlGgVS9loFkdApndPkYGdJHV9lChoBmgJaA9DCIC1atdEp3JAlIaUUpRoFUvMaBZHQKZ3U8Md92J1fZQoaAZoCWgPQwjX3TzV4d5yQJSGlFKUaBVL7WgWR0Cmd22NedCmdX2UKGgGaAloD0MIxAlMp/VEb0CUhpRSlGgVS+1oFkdApneyrBCUo3V9lChoBmgJaA9DCH9o5sk1H3JAlIaUUpRoFUvGaBZHQKZ36S13MZB1fZQoaAZoCWgPQwgFw7mG2UNzQJSGlFKUaBVL+2gWR0CmeBp1q33IdX2UKGgGaAloD0MIiUUMO0y1cECUhpRSlGgVTQQBaBZHQKZ5G+V1Oj91fZQoaAZoCWgPQwjbUZyjDsBvQJSGlFKUaBVL2GgWR0CmeW38fmtAdX2UKGgGaAloD0MI1v85zFcCcECUhpRSlGgVS7toFkdApnmBB9kSVXV9lChoBmgJaA9DCClAFMzYr3FAlIaUUpRoFUvDaBZHQKZ6O3G4qgB1fZQoaAZoCWgPQwi/f/PiRNFxQJSGlFKUaBVL0mgWR0CmemVhsqJ/dX2UKGgGaAloD0MIjzaOWEuzcECUhpRSlGgVS+doFkdApnqML6UJOXV9lChoBmgJaA9DCJhr0QI0Z29AlIaUUpRoFUvLaBZHQKZ6llz2exx1fZQoaAZoCWgPQwjZJhWNNQdwQJSGlFKUaBVLxWgWR0CmeqqdYnv2dX2UKGgGaAloD0MIxt6LL9r8ckCUhpRSlGgVTS4BaBZHQKZ6r6ciGFl1fZQoaAZoCWgPQwig+Zy7nRBxQJSGlFKUaBVL6mgWR0CmewLvTgEVdX2UKGgGaAloD0MIYMd/geCtcUCUhpRSlGgVTQ4BaBZHQKZ7KSeRPoF1fZQoaAZoCWgPQwiLw5lfTR9yQJSGlFKUaBVL+mgWR0Cme4c3EQ5FdX2UKGgGaAloD0MI5q26DtW7cUCUhpRSlGgVS9ZoFkdApnukCzTnaHV9lChoBmgJaA9DCAPPvYfLsG9AlIaUUpRoFUv9aBZHQKZ7u8Gs3hp1fZQoaAZoCWgPQwjnbWx2JPdwQJSGlFKUaBVL2mgWR0Cme+dbxEv1dX2UKGgGaAloD0MIOh4zUNm8ckCUhpRSlGgVS/xoFkdApnwEBMi8nXV9lChoBmgJaA9DCNmvO915YG1AlIaUUpRoFUvLaBZHQKZ8mrsjVx11fZQoaAZoCWgPQwh0m3CvzG5wQJSGlFKUaBVLxmgWR0CmfN6Rhc7hdX2UKGgGaAloD0MIS3hCr7+ecUCUhpRSlGgVS8xoFkdApnzkNKAavXV9lChoBmgJaA9DCDY//tKi/G5AlIaUUpRoFUvfaBZHQKZ9i0bcXWR1fZQoaAZoCWgPQwhBg02dR8pwQJSGlFKUaBVLymgWR0CmfZCngpBpdX2UKGgGaAloD0MI4h+29KgocECUhpRSlGgVS9VoFkdApn2a7I1cdHV9lChoBmgJaA9DCJLOwMhLWnNAlIaUUpRoFUvkaBZHQKZ9zB3Roh91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f869cfd6bd44a0baf393a88983b938e9171e4bb3bfdf3bf8d551a84e1066ccf
|
3 |
+
size 147312
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff4b223bdc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff4b223be50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff4b223bee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff4b223bf70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff4b21bf040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff4b21bf0d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff4b21bf160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff4b21bf1f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff4b21bf280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff4b21bf310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff4b21bf3a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff4b21bf430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7ff4b223a3c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 3014656,
|
47 |
+
"_total_timesteps": 3000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1676656526378084070,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb4ybynxkQ+gggjvgcFl75qN8S97uYbvQAAAAAAAAAAM5zXvZnMZT4TpNo+oxIdvjpAAj48sEQ+AAAAAAAAAADNFXa9RiHGPhFTAj0x4ba+MWedvAS/mzwAAAAAAAAAACZB5T2gK5Q/zqClPsucEL8zz1I+G9JBPgAAAAAAAAAAMyP1u/YEEbo0eT60gGwML1MYAzp34o0zAACAPwAAgD8g1Si+M2MGPyD3Cj5tIba+KrQmvfhnuD0AAAAAAAAAAGZYoTyYIZg9IHWUvYQmjr6Uqc28Ygt1vQAAAAAAAAAAmk0TvaTIb7uSnJG8yiGWPBcRqjyqaYC9AACAPwAAgD8A+KK7j7YpukJqeTZN9JoxHouhunrHlLUAAIA/AACAP5qJhLsKxjK7rnaeOwWQkDz7Myi8CiN5PQAAgD8AAIA/2sbPvRqcjz+R08a+7dk7v430Tb5QJaG9AAAAAAAAAACz+zi9o6+nP6hSB7/rNSe/lhuhuz3KHb4AAAAAAAAAAADzqb3kWRM+hffnPYOBJb6CfOQ8k7givQAAAAAAAAAAgGdMPTgSnLueSJK7DHyzPKLSBr1m6JY9AACAPwAAgD+AYoG9T/9APfBL7j0CSTi+wYMcPUYcIb0AAAAAAAAAAICGNz1NvYo/7ROsPaT1Hb/ivrU9A7JuPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.004885333333333408,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBi6PNeN5ckCUhpRSlIwBbJRL24wBdJRHQKZiY+yJKrd1fZQoaAZoCWgPQwh01NFxNaByQJSGlFKUaBVNFwFoFkdApmJkkrwvx3V9lChoBmgJaA9DCDIcz2fA33NAlIaUUpRoFUveaBZHQKZiiB19v0h1fZQoaAZoCWgPQwi85lWdFR5yQJSGlFKUaBVL+2gWR0CmYrolt0mudX2UKGgGaAloD0MIgLirV9FycUCUhpRSlGgVS8loFkdApmL0Iw/PgXV9lChoBmgJaA9DCDdRS3OrjG9AlIaUUpRoFUv2aBZHQKZjEgzxgAp1fZQoaAZoCWgPQwgGL/oKUj5wQJSGlFKUaBVL8mgWR0CmYxELx7RfdX2UKGgGaAloD0MI+RBUjV4wcECUhpRSlGgVTR4BaBZHQKZjIb/ffoB1fZQoaAZoCWgPQwjYnlkSoHVzQJSGlFKUaBVL32gWR0CmYys6ij+KdX2UKGgGaAloD0MIL4Zyot1BcUCUhpRSlGgVS/poFkdApmMpRTCLuXV9lChoBmgJaA9DCLPviuB/pXFAlIaUUpRoFU0IAWgWR0CmY3BW5paidX2UKGgGaAloD0MIj/tW68QyckCUhpRSlGgVS79oFkdApmOIVqN6xHV9lChoBmgJaA9DCOjbgqW6DW1AlIaUUpRoFUvdaBZHQKZj6Vkc0ch1fZQoaAZoCWgPQwgPYJFff5hxQJSGlFKUaBVLu2gWR0CmZBZksjFAdX2UKGgGaAloD0MIvFzEd6IbcUCUhpRSlGgVS+BoFkdApmRuvZAY53V9lChoBmgJaA9DCEmAmlr2E3NAlIaUUpRoFUvJaBZHQKZken6VMVV1fZQoaAZoCWgPQwjizK/mAMpuQJSGlFKUaBVL+WgWR0CmZQg2AG0NdX2UKGgGaAloD0MIritmhHekckCUhpRSlGgVTQkBaBZHQKZlFg5zYEp1fZQoaAZoCWgPQwjmrE85puBwQJSGlFKUaBVL9mgWR0CmZSYKx9ofdX2UKGgGaAloD0MIPdUhNwN9ckCUhpRSlGgVS/BoFkdApmVHXyy2QXV9lChoBmgJaA9DCAsIrYdvU3JAlIaUUpRoFUvXaBZHQKZlafdRBNV1fZQoaAZoCWgPQwhuaTUk7gx0QJSGlFKUaBVL2GgWR0CmZW7rLQokdX2UKGgGaAloD0MIUPwYc9eQcECUhpRSlGgVS/BoFkdApmWYyhzvJHV9lChoBmgJaA9DCHEDPj+M2HJAlIaUUpRoFUv5aBZHQKZlsRRMvh91fZQoaAZoCWgPQwi6Mqg2eC1xQJSGlFKUaBVNBAFoFkdApmW3G4qgAnV9lChoBmgJaA9DCPiqlQl/PnBAlIaUUpRoFUvcaBZHQKZl0SzPa+N1fZQoaAZoCWgPQwhhONcwwwVxQJSGlFKUaBVNAAFoFkdApmXUqpcX33V9lChoBmgJaA9DCK+WOzNBbW5AlIaUUpRoFUvVaBZHQKZl2hvBJqZ1fZQoaAZoCWgPQwi9baZC/GRyQJSGlFKUaBVLvWgWR0CmZh0gSvkjdX2UKGgGaAloD0MI7ZxmgXZjbkCUhpRSlGgVS+toFkdApm+63CsOonV9lChoBmgJaA9DCGKh1jSv9HNAlIaUUpRoFUvdaBZHQKZwIKJl8PZ1fZQoaAZoCWgPQwheaRmp9wZvQJSGlFKUaBVL4WgWR0CmcCDoZAIIdX2UKGgGaAloD0MI547+l+uZckCUhpRSlGgVS9loFkdApnCYCKaXr3V9lChoBmgJaA9DCIJYNnPIEnJAlIaUUpRoFUvbaBZHQKZwu5e7cwh1fZQoaAZoCWgPQwhTI/QztbpwQJSGlFKUaBVL6mgWR0CmcNmpuMuOdX2UKGgGaAloD0MINEdWflkyc0CUhpRSlGgVS9BoFkdApnDiGahHsnV9lChoBmgJaA9DCDBoIQEjAnBAlIaUUpRoFUviaBZHQKZxIMDwH7h1fZQoaAZoCWgPQwi0Oc5twrBvQJSGlFKUaBVL9mgWR0CmcTZ/0/W2dX2UKGgGaAloD0MI0ZDxKJXOcUCUhpRSlGgVS7xoFkdApnGJ6F/QSnV9lChoBmgJaA9DCMct5ufGYHFAlIaUUpRoFUvpaBZHQKZxjOZ9d/t1fZQoaAZoCWgPQwj0NctlI1hxQJSGlFKUaBVL6GgWR0CmcbGmk30gdX2UKGgGaAloD0MIDK8keS6ycECUhpRSlGgVTQQBaBZHQKZxwH4XXRR1fZQoaAZoCWgPQwir56T3jVpwQJSGlFKUaBVL9mgWR0CmcdcNH6MzdX2UKGgGaAloD0MI8uzyrU9icUCUhpRSlGgVTQgBaBZHQKZx57el9Bt1fZQoaAZoCWgPQwgw16IFaKhyQJSGlFKUaBVNAgFoFkdApnH5QxesxXV9lChoBmgJaA9DCBB5y9WPqHFAlIaUUpRoFUvTaBZHQKZyhSkTHsF1fZQoaAZoCWgPQwhATMKF/PByQJSGlFKUaBVL3mgWR0CmcqN65XlsdX2UKGgGaAloD0MIFTsah3rCc0CUhpRSlGgVTRkBaBZHQKZy2ID5j6N1fZQoaAZoCWgPQwgw2uOFtHNyQJSGlFKUaBVLtWgWR0CmcuRagVXWdX2UKGgGaAloD0MINNsV+uD9bkCUhpRSlGgVS/ZoFkdApnN14LThHnV9lChoBmgJaA9DCIxn0NA/GHFAlIaUUpRoFUvOaBZHQKZzhcbiqAB1fZQoaAZoCWgPQwgibeNPVP5UQJSGlFKUaBVLs2gWR0Cmc6DMNc4YdX2UKGgGaAloD0MIvtu8cRI7ckCUhpRSlGgVS85oFkdApnOmOGTLXHV9lChoBmgJaA9DCC/7dae7bnBAlIaUUpRoFUvxaBZHQKZzyzyjHn51fZQoaAZoCWgPQwja44V0+FZyQJSGlFKUaBVNCQFoFkdApnP2/N7jUHV9lChoBmgJaA9DCGn9LQH4THRAlIaUUpRoFUvFaBZHQKZ0GMmWt2d1fZQoaAZoCWgPQwjqr1dYcJpwQJSGlFKUaBVL12gWR0CmdC3PZ7HAdX2UKGgGaAloD0MIaCWt+IYAckCUhpRSlGgVS7doFkdApnQ+vfTCtXV9lChoBmgJaA9DCGcpWU5CwnFAlIaUUpRoFUvAaBZHQKZ0RVaOgg51fZQoaAZoCWgPQwgEjZlEvRdxQJSGlFKUaBVL1WgWR0CmdHSyUs4DdX2UKGgGaAloD0MII/lKIKXgcECUhpRSlGgVS/VoFkdApnTI3irDInV9lChoBmgJaA9DCBlwlpKlqnNAlIaUUpRoFUu3aBZHQKZ09PKMefZ1fZQoaAZoCWgPQwhqFJLManlvQJSGlFKUaBVLwWgWR0CmdYzWf9P2dX2UKGgGaAloD0MICoZzDXPEcECUhpRSlGgVS+poFkdApnXftfG+9XV9lChoBmgJaA9DCOJyvAIRxHBAlIaUUpRoFUvDaBZHQKZ2dXmNiph1fZQoaAZoCWgPQwjpKXKIuEhvQJSGlFKUaBVLxGgWR0CmdpYkE9t/dX2UKGgGaAloD0MIRNycSgaQS0CUhpRSlGgVS45oFkdApnaju2JBPnV9lChoBmgJaA9DCFH0wMfgHG1AlIaUUpRoFUvUaBZHQKZ25Wcz68B1fZQoaAZoCWgPQwgKaCJsuFdwQJSGlFKUaBVL5WgWR0CmdwVbJOnEdX2UKGgGaAloD0MI6X+5Fq1dc0CUhpRSlGgVTRQBaBZHQKZ3E10DEFZ1fZQoaAZoCWgPQwgeqb7zC45uQJSGlFKUaBVLvWgWR0CmdyxMWXTmdX2UKGgGaAloD0MIBYvDmR+fcECUhpRSlGgVS9loFkdApndPkYGdJHV9lChoBmgJaA9DCIC1atdEp3JAlIaUUpRoFUvMaBZHQKZ3U8Md92J1fZQoaAZoCWgPQwjX3TzV4d5yQJSGlFKUaBVL7WgWR0Cmd22NedCmdX2UKGgGaAloD0MIxAlMp/VEb0CUhpRSlGgVS+1oFkdApneyrBCUo3V9lChoBmgJaA9DCH9o5sk1H3JAlIaUUpRoFUvGaBZHQKZ36S13MZB1fZQoaAZoCWgPQwgFw7mG2UNzQJSGlFKUaBVL+2gWR0CmeBp1q33IdX2UKGgGaAloD0MIiUUMO0y1cECUhpRSlGgVTQQBaBZHQKZ5G+V1Oj91fZQoaAZoCWgPQwjbUZyjDsBvQJSGlFKUaBVL2GgWR0CmeW38fmtAdX2UKGgGaAloD0MI1v85zFcCcECUhpRSlGgVS7toFkdApnmBB9kSVXV9lChoBmgJaA9DCClAFMzYr3FAlIaUUpRoFUvDaBZHQKZ6O3G4qgB1fZQoaAZoCWgPQwi/f/PiRNFxQJSGlFKUaBVL0mgWR0CmemVhsqJ/dX2UKGgGaAloD0MIjzaOWEuzcECUhpRSlGgVS+doFkdApnqML6UJOXV9lChoBmgJaA9DCJhr0QI0Z29AlIaUUpRoFUvLaBZHQKZ6llz2exx1fZQoaAZoCWgPQwjZJhWNNQdwQJSGlFKUaBVLxWgWR0CmeqqdYnv2dX2UKGgGaAloD0MIxt6LL9r8ckCUhpRSlGgVTS4BaBZHQKZ6r6ciGFl1fZQoaAZoCWgPQwig+Zy7nRBxQJSGlFKUaBVL6mgWR0CmewLvTgEVdX2UKGgGaAloD0MIYMd/geCtcUCUhpRSlGgVTQ4BaBZHQKZ7KSeRPoF1fZQoaAZoCWgPQwiLw5lfTR9yQJSGlFKUaBVL+mgWR0Cme4c3EQ5FdX2UKGgGaAloD0MI5q26DtW7cUCUhpRSlGgVS9ZoFkdApnukCzTnaHV9lChoBmgJaA9DCAPPvYfLsG9AlIaUUpRoFUv9aBZHQKZ7u8Gs3hp1fZQoaAZoCWgPQwjnbWx2JPdwQJSGlFKUaBVL2mgWR0Cme+dbxEv1dX2UKGgGaAloD0MIOh4zUNm8ckCUhpRSlGgVS/xoFkdApnwEBMi8nXV9lChoBmgJaA9DCNmvO915YG1AlIaUUpRoFUvLaBZHQKZ8mrsjVx11fZQoaAZoCWgPQwh0m3CvzG5wQJSGlFKUaBVLxmgWR0CmfN6Rhc7hdX2UKGgGaAloD0MIS3hCr7+ecUCUhpRSlGgVS8xoFkdApnzkNKAavXV9lChoBmgJaA9DCDY//tKi/G5AlIaUUpRoFUvfaBZHQKZ9i0bcXWR1fZQoaAZoCWgPQwhBg02dR8pwQJSGlFKUaBVLymgWR0CmfZCngpBpdX2UKGgGaAloD0MI4h+29KgocECUhpRSlGgVS9VoFkdApn2a7I1cdHV9lChoBmgJaA9DCJLOwMhLWnNAlIaUUpRoFUvkaBZHQKZ9zB3Roh91ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 736,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5c37834b548a035364a3dbc13337749817f47d7aa2bb0f69ae418856f68760b
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eca4096e4030be8015fda94d1b07119d5d4b43ebd305c31ae31c6950bd94399b
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (199 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 273.66853437137524, "std_reward": 25.880070816964558, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-17T18:40:44.162251"}
|