Nocte commited on
Commit
643f155
·
verified ·
1 Parent(s): 096877d

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 229.41 +/- 63.47
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x781480c9bd00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781480c9bd90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781480c9be20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781480c9beb0>", "_build": "<function ActorCriticPolicy._build at 0x781480c9bf40>", "forward": "<function ActorCriticPolicy.forward at 0x781480ca0040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x781480ca00d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781480ca0160>", "_predict": "<function ActorCriticPolicy._predict at 0x781480ca01f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x781480ca0280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781480ca0310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x781480ca03a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78148185d880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711033008499148146, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrZVbyAJbY/jK+fviZuwj2Z3Xc7Uu8wvQAAAAAAAAAAMzfTvL9XrT++rXm+tzK+vghODr2ACeS9AAAAAAAAAACABhC9j2JQusS6PrrxYG61KCwNO5pXWzkAAIA/AACAP/OdoT17kJG6vBCYuCK+z7PjgyQ7Gg2vNwAAgD8AAIA/gIHGPY/OEbrw/zw7GWyvNvd6y7oo2GG6AACAPwAAgD/mE5O9XJcduiq23rb2/B+y4IAHu04tBDYAAIA/AACAP7OYpT24BvG5c7iRu8ZjpDY7KQK6Cr8WtgAAgD8AAIA/LdU4PuVvCD7C6j494VRWvgYtMz0KbAi9AAAAAAAAAABaLIo9w/kCuopaarjvXxmz9xVnu32AiDcAAIA/AACAP2aWMTxIw7263TrTOwOp57TLJ625fujHswAAgD8AAIA/mryRPI9KNbr1b585msE4NNP8Lrsfnre4AACAPwAAgD9mKpI7rsmkumJCJTllyNm1+eRNuQU/PbgAAIA/AACAP01xZb3DqUC6mqlIOV63CTS2+So6mP1nuAAAgD8AAIA/8zimPSnIHrr6uia7+jLDN8Rk1jmurtQ5AACAPwAAAAANAsM99vxXum6/5rqad8Sz0BiTum+JBToAAIA/AACAP01Hyj1IC4W6VXpkukdewLUvJl67AjeCOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGdzefh/Aj+MAWyUTegDjAF0lEdAkBb1uFYdQ3V9lChoBkdAYmWeii7Ci2gHTegDaAhHQJAXn9uP3i91fZQoaAZHQGJ7gflp48loB03oA2gIR0CQG7QkX1rZdX2UKGgGR0Bi37zVc2R8aAdN6ANoCEdAkByCEQGwA3V9lChoBkdAXj0ajvd/KGgHTegDaAhHQJAiseZG8VZ1fZQoaAZHQF/VwJw84gloB03oA2gIR0CQJbzmfXf7dX2UKGgGR0Bmjz5wfhddaAdN6ANoCEdAkEF4yj59E3V9lChoBkdAYyro1UEPlWgHTegDaAhHQJBDj9YOlO51fZQoaAZHQF5UGOMl1KZoB03oA2gIR0CQRw3Ov+wUdX2UKGgGR0BdCoTTOPeYaAdN6ANoCEdAkEuxsl9jPXV9lChoBkdAYOx/BnBciWgHTegDaAhHQJBNFiCrcTJ1fZQoaAZHQF7FskIHC41oB03oA2gIR0CQTk/T9bX6dX2UKGgGR0BfHo/3WWhRaAdN6ANoCEdAkE6JyEL6UXV9lChoBkdAYnWMpgCwKWgHTegDaAhHQJBQHaoMrmR1fZQoaAZHQGNZDoIOYploB03oA2gIR0CQUn84PwuvdX2UKGgGR0BhjgmReTmoaAdN6ANoCEdAkGNdETg2qHV9lChoBkdAYGtyyUs4DWgHTegDaAhHQJBmRH/cWTJ1fZQoaAZHQGCeEauOjqRoB03oA2gIR0CQZuz8xbjcdX2UKGgGR0Bl4+iBXjlxaAdN6ANoCEdAkGr6nWJ79nV9lChoBkdAZR29QoCuEGgHTegDaAhHQJBrx1jiGWV1fZQoaAZHQDOirCFbmltoB0u1aAhHQJBuggW8AaN1fZQoaAZHQGOFr4WUKRdoB03oA2gIR0CQcuFz+3pfdX2UKGgGR0BkbVfCyhSMaAdN6ANoCEdAkHbpO32EkHV9lChoBkdANlZDZ13dK2gHS81oCEdAkHhpDArQPnV9lChoBkdAY7iCZF5OamgHTegDaAhHQJCRftTkyUN1fZQoaAZHQF4ZLjghr31oB03oA2gIR0CQkv99MK1HdX2UKGgGR0BAgF/H5rP/aAdLumgIR0CQk4cdo372dX2UKGgGR0Bl3IsmOU+taAdN6ANoCEdAkJVv+wTufHV9lChoBkdAZjSpkPMB62gHTegDaAhHQJCZ5Cu2ZzB1fZQoaAZHQF8EpXIU8FJoB03oA2gIR0CQm2Mm4RVZdX2UKGgGR0BiMxKvmozfaAdN6ANoCEdAkJy4Lb5/LHV9lChoBkdAYT8Q9RrJsGgHTegDaAhHQJCc8V+I/JN1fZQoaAZHQE9Q89Oh0yRoB0u9aAhHQJCef8FY+0R1fZQoaAZHQGHx3xFy7wtoB03oA2gIR0CQno/82rGSdX2UKGgGR0BgvAywfQruaAdN6ANoCEdAkKIGL1mJ33V9lChoBkdASmMRe1KGtmgHS8hoCEdAkKsuHN5dGHV9lChoBkdAZCtpxFRYR2gHTegDaAhHQJC2S7ulXRx1fZQoaAZHQGVz8GC7K7toB03oA2gIR0CQtvYzSCvpdX2UKGgGR0BhEgqmTC+DaAdN6ANoCEdAkLwSa7VawHV9lChoBkdAZkSx9G7SRmgHTegDaAhHQJC/FF+d9Ul1fZQoaAZHQGM6IXTEzftoB03oA2gIR0CQwq4FRpDedX2UKGgGR0Bd3UWVNYbLaAdN6ANoCEdAkMdQavRqoXV9lChoBkdAX0pWYF7laWgHTegDaAhHQJDiTluFYdR1fZQoaAZHQGSZnyd4FA5oB03oA2gIR0CQ49OTaCcxdX2UKGgGR0BktEsH0K7aaAdN6ANoCEdAkOYwC8vmHXV9lChoBkdAY01HEuQIU2gHTegDaAhHQJDqj5IpYtB1fZQoaAZHQGZSnZsbedloB03oA2gIR0CQ7ADGtITXdX2UKGgGR0A7NVJ+UhV3aAdLt2gIR0CQ7OjfvWpZdX2UKGgGR0BktEhxHXmOaAdN6ANoCEdAkO1LxqfvnnV9lChoBkdAZAZCswL3K2gHTegDaAhHQJDtf3Hq/ud1fZQoaAZHQGXOxjz7MxJoB03oA2gIR0CQ7vODJ2dNdX2UKGgGR0BgfO4ZuQ6qaAdN6ANoCEdAkPFxWo3rEHV9lChoBkdAQOy7CiyprGgHS99oCEdAkPdCyY5T63V9lChoBkdAL9Kkl/pdKWgHS8hoCEdAkPd5lBhQWXV9lChoBkdAZPM1+AmReWgHTegDaAhHQJD5BwVCXyB1fZQoaAZHQDCtyGSIP9VoB0vCaAhHQJED9l8PWhB1fZQoaAZHQGEmxcmjTKFoB03oA2gIR0CRBPIRh+fAdX2UKGgGR0Bj7URlHz6KaAdN6ANoCEdAkQWqGUOd5XV9lChoBkdAYtFivPkaM2gHTegDaAhHQJEKQVHnU2F1fZQoaAZHQF69jFyaNMpoB03oA2gIR0CRDQybx3FDdX2UKGgGR0Bhqz1VYISlaAdN6ANoCEdAkRBpZKWcBnV9lChoBkdAZTaV0tAcDWgHTegDaAhHQJEVCRjjJdV1fZQoaAZHQF2LTER8MNNoB03oA2gIR0CRMl0Syt3fdX2UKGgGR0A78Ny5qdpZaAdLs2gIR0CRNQpPRArydX2UKGgGR0Bi8IB91EE1aAdN6ANoCEdAkTXBJEpiJHV9lChoBkdAZLY7BfrrxGgHTegDaAhHQJE6TarWAgB1fZQoaAZHQF5cAfdRBNVoB03oA2gIR0CRPKCojv/jdX2UKGgGR0Bfvwtvn8sMaAdN6ANoCEdAkT0FVo6CDnV9lChoBkdAXqnLB9Cu2mgHTegDaAhHQJE+0G7jDKp1fZQoaAZHQGEwKKxcE/1oB03oA2gIR0CRQXEy+HrRdX2UKGgGR0BON3WOIZZTaAdL4mgIR0CRQlzZ6D5CdX2UKGgGR0Bltcv9LpRoaAdN6ANoCEdAkUgKpo9LYnV9lChoBkdAUAX+glF+eGgHS9FoCEdAkUhUZJkGzXV9lChoBkdAYhKsZHd43WgHTegDaAhHQJFJn/io86p1fZQoaAZHQGIj4a5wwTNoB03oA2gIR0CRUo2Xsw+MdX2UKGgGR0BjVfp2U0N0aAdN6ANoCEdAkVMtXko4MnV9lChoBkdAZe+0sOG0u2gHTegDaAhHQJFTr4+KTB91fZQoaAZHQFvwFPi1iONoB03oA2gIR0CRV8jdHlOodX2UKGgGR0BjitgDzRQaaAdN6ANoCEdAkVovHYHxBnV9lChoBkdAZ6lqlgtvoGgHTegDaAhHQJFc6CoS+QF1fZQoaAZHQGMUbBfrrxBoB03oA2gIR0CRfMdbxEv1dX2UKGgGR0Bh4dXgccU/aAdN6ANoCEdAkX56/7BO6HV9lChoBkdAZKf+wTufEmgHTegDaAhHQJGDWrNnoPl1fZQoaAZHQGOPxhDw6QxoB03oA2gIR0CRhZGSZBszdX2UKGgGR0BjH4VbiZOSaAdN6ANoCEdAkYemQKa5PXV9lChoBkdAOEU4m1IAfmgHS6poCEdAkYez/+85CHV9lChoBkdAZXWlTm4iHWgHTegDaAhHQJGKO7Bfrrx1fZQoaAZHQGSaZX2dupFoB03oA2gIR0CRixA44p+ddX2UKGgGR0BkYgdjoZAIaAdN6ANoCEdAkZFVKsdT53V9lChoBkdAZk9FS88La2gHTegDaAhHQJGRqTY/Vy51fZQoaAZHQGNb+Vkc0choB03oA2gIR0CRkzKZ2IO6dX2UKGgGR0BQSWyon8baaAdLsmgIR0CRmwx8D0UXdX2UKGgGR0BitbeEZiuuaAdN6ANoCEdAkZu2BWgezXV9lChoBkdAZP69EkSmImgHTegDaAhHQJGcV9nbqQl1fZQoaAZHQGRkOZb6guhoB03oA2gIR0CRnN/IbOu8dX2UKGgGR0BnFFCRfWtmaAdN6ANoCEdAkaD6Wom5UnV9lChoBkdAZOpSZ0CA+mgHTegDaAhHQJGjb/1g6U91fZQoaAZHQF97D3M6ikBoB03oA2gIR0CRpnQOnVG1dX2UKGgGR0BhqGm3vx6OaAdN6ANoCEdAkbMXOv+wT3V9lChoBkdAcOB3hn8KomgHTcsBaAhHQJGzcBdUsFt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56259b883e3f21c1bbbc62da1a4a4d310e7a08bec9d90a0f2863215e6e391ef9
3
+ size 148068
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x781480c9bd00>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781480c9bd90>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781480c9be20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781480c9beb0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x781480c9bf40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x781480ca0040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x781480ca00d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781480ca0160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x781480ca01f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x781480ca0280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781480ca0310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x781480ca03a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x78148185d880>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1711033008499148146,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrZVbyAJbY/jK+fviZuwj2Z3Xc7Uu8wvQAAAAAAAAAAMzfTvL9XrT++rXm+tzK+vghODr2ACeS9AAAAAAAAAACABhC9j2JQusS6PrrxYG61KCwNO5pXWzkAAIA/AACAP/OdoT17kJG6vBCYuCK+z7PjgyQ7Gg2vNwAAgD8AAIA/gIHGPY/OEbrw/zw7GWyvNvd6y7oo2GG6AACAPwAAgD/mE5O9XJcduiq23rb2/B+y4IAHu04tBDYAAIA/AACAP7OYpT24BvG5c7iRu8ZjpDY7KQK6Cr8WtgAAgD8AAIA/LdU4PuVvCD7C6j494VRWvgYtMz0KbAi9AAAAAAAAAABaLIo9w/kCuopaarjvXxmz9xVnu32AiDcAAIA/AACAP2aWMTxIw7263TrTOwOp57TLJ625fujHswAAgD8AAIA/mryRPI9KNbr1b585msE4NNP8Lrsfnre4AACAPwAAgD9mKpI7rsmkumJCJTllyNm1+eRNuQU/PbgAAIA/AACAP01xZb3DqUC6mqlIOV63CTS2+So6mP1nuAAAgD8AAIA/8zimPSnIHrr6uia7+jLDN8Rk1jmurtQ5AACAPwAAAAANAsM99vxXum6/5rqad8Sz0BiTum+JBToAAIA/AACAP01Hyj1IC4W6VXpkukdewLUvJl67AjeCOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGdzefh/Aj+MAWyUTegDjAF0lEdAkBb1uFYdQ3V9lChoBkdAYmWeii7Ci2gHTegDaAhHQJAXn9uP3i91fZQoaAZHQGJ7gflp48loB03oA2gIR0CQG7QkX1rZdX2UKGgGR0Bi37zVc2R8aAdN6ANoCEdAkByCEQGwA3V9lChoBkdAXj0ajvd/KGgHTegDaAhHQJAiseZG8VZ1fZQoaAZHQF/VwJw84gloB03oA2gIR0CQJbzmfXf7dX2UKGgGR0Bmjz5wfhddaAdN6ANoCEdAkEF4yj59E3V9lChoBkdAYyro1UEPlWgHTegDaAhHQJBDj9YOlO51fZQoaAZHQF5UGOMl1KZoB03oA2gIR0CQRw3Ov+wUdX2UKGgGR0BdCoTTOPeYaAdN6ANoCEdAkEuxsl9jPXV9lChoBkdAYOx/BnBciWgHTegDaAhHQJBNFiCrcTJ1fZQoaAZHQF7FskIHC41oB03oA2gIR0CQTk/T9bX6dX2UKGgGR0BfHo/3WWhRaAdN6ANoCEdAkE6JyEL6UXV9lChoBkdAYnWMpgCwKWgHTegDaAhHQJBQHaoMrmR1fZQoaAZHQGNZDoIOYploB03oA2gIR0CQUn84PwuvdX2UKGgGR0BhjgmReTmoaAdN6ANoCEdAkGNdETg2qHV9lChoBkdAYGtyyUs4DWgHTegDaAhHQJBmRH/cWTJ1fZQoaAZHQGCeEauOjqRoB03oA2gIR0CQZuz8xbjcdX2UKGgGR0Bl4+iBXjlxaAdN6ANoCEdAkGr6nWJ79nV9lChoBkdAZR29QoCuEGgHTegDaAhHQJBrx1jiGWV1fZQoaAZHQDOirCFbmltoB0u1aAhHQJBuggW8AaN1fZQoaAZHQGOFr4WUKRdoB03oA2gIR0CQcuFz+3pfdX2UKGgGR0BkbVfCyhSMaAdN6ANoCEdAkHbpO32EkHV9lChoBkdANlZDZ13dK2gHS81oCEdAkHhpDArQPnV9lChoBkdAY7iCZF5OamgHTegDaAhHQJCRftTkyUN1fZQoaAZHQF4ZLjghr31oB03oA2gIR0CQkv99MK1HdX2UKGgGR0BAgF/H5rP/aAdLumgIR0CQk4cdo372dX2UKGgGR0Bl3IsmOU+taAdN6ANoCEdAkJVv+wTufHV9lChoBkdAZjSpkPMB62gHTegDaAhHQJCZ5Cu2ZzB1fZQoaAZHQF8EpXIU8FJoB03oA2gIR0CQm2Mm4RVZdX2UKGgGR0BiMxKvmozfaAdN6ANoCEdAkJy4Lb5/LHV9lChoBkdAYT8Q9RrJsGgHTegDaAhHQJCc8V+I/JN1fZQoaAZHQE9Q89Oh0yRoB0u9aAhHQJCef8FY+0R1fZQoaAZHQGHx3xFy7wtoB03oA2gIR0CQno/82rGSdX2UKGgGR0BgvAywfQruaAdN6ANoCEdAkKIGL1mJ33V9lChoBkdASmMRe1KGtmgHS8hoCEdAkKsuHN5dGHV9lChoBkdAZCtpxFRYR2gHTegDaAhHQJC2S7ulXRx1fZQoaAZHQGVz8GC7K7toB03oA2gIR0CQtvYzSCvpdX2UKGgGR0BhEgqmTC+DaAdN6ANoCEdAkLwSa7VawHV9lChoBkdAZkSx9G7SRmgHTegDaAhHQJC/FF+d9Ul1fZQoaAZHQGM6IXTEzftoB03oA2gIR0CQwq4FRpDedX2UKGgGR0Bd3UWVNYbLaAdN6ANoCEdAkMdQavRqoXV9lChoBkdAX0pWYF7laWgHTegDaAhHQJDiTluFYdR1fZQoaAZHQGSZnyd4FA5oB03oA2gIR0CQ49OTaCcxdX2UKGgGR0BktEsH0K7aaAdN6ANoCEdAkOYwC8vmHXV9lChoBkdAY01HEuQIU2gHTegDaAhHQJDqj5IpYtB1fZQoaAZHQGZSnZsbedloB03oA2gIR0CQ7ADGtITXdX2UKGgGR0A7NVJ+UhV3aAdLt2gIR0CQ7OjfvWpZdX2UKGgGR0BktEhxHXmOaAdN6ANoCEdAkO1LxqfvnnV9lChoBkdAZAZCswL3K2gHTegDaAhHQJDtf3Hq/ud1fZQoaAZHQGXOxjz7MxJoB03oA2gIR0CQ7vODJ2dNdX2UKGgGR0BgfO4ZuQ6qaAdN6ANoCEdAkPFxWo3rEHV9lChoBkdAQOy7CiyprGgHS99oCEdAkPdCyY5T63V9lChoBkdAL9Kkl/pdKWgHS8hoCEdAkPd5lBhQWXV9lChoBkdAZPM1+AmReWgHTegDaAhHQJD5BwVCXyB1fZQoaAZHQDCtyGSIP9VoB0vCaAhHQJED9l8PWhB1fZQoaAZHQGEmxcmjTKFoB03oA2gIR0CRBPIRh+fAdX2UKGgGR0Bj7URlHz6KaAdN6ANoCEdAkQWqGUOd5XV9lChoBkdAYtFivPkaM2gHTegDaAhHQJEKQVHnU2F1fZQoaAZHQF69jFyaNMpoB03oA2gIR0CRDQybx3FDdX2UKGgGR0Bhqz1VYISlaAdN6ANoCEdAkRBpZKWcBnV9lChoBkdAZTaV0tAcDWgHTegDaAhHQJEVCRjjJdV1fZQoaAZHQF2LTER8MNNoB03oA2gIR0CRMl0Syt3fdX2UKGgGR0A78Ny5qdpZaAdLs2gIR0CRNQpPRArydX2UKGgGR0Bi8IB91EE1aAdN6ANoCEdAkTXBJEpiJHV9lChoBkdAZLY7BfrrxGgHTegDaAhHQJE6TarWAgB1fZQoaAZHQF5cAfdRBNVoB03oA2gIR0CRPKCojv/jdX2UKGgGR0Bfvwtvn8sMaAdN6ANoCEdAkT0FVo6CDnV9lChoBkdAXqnLB9Cu2mgHTegDaAhHQJE+0G7jDKp1fZQoaAZHQGEwKKxcE/1oB03oA2gIR0CRQXEy+HrRdX2UKGgGR0BON3WOIZZTaAdL4mgIR0CRQlzZ6D5CdX2UKGgGR0Bltcv9LpRoaAdN6ANoCEdAkUgKpo9LYnV9lChoBkdAUAX+glF+eGgHS9FoCEdAkUhUZJkGzXV9lChoBkdAYhKsZHd43WgHTegDaAhHQJFJn/io86p1fZQoaAZHQGIj4a5wwTNoB03oA2gIR0CRUo2Xsw+MdX2UKGgGR0BjVfp2U0N0aAdN6ANoCEdAkVMtXko4MnV9lChoBkdAZe+0sOG0u2gHTegDaAhHQJFTr4+KTB91fZQoaAZHQFvwFPi1iONoB03oA2gIR0CRV8jdHlOodX2UKGgGR0BjitgDzRQaaAdN6ANoCEdAkVovHYHxBnV9lChoBkdAZ6lqlgtvoGgHTegDaAhHQJFc6CoS+QF1fZQoaAZHQGMUbBfrrxBoB03oA2gIR0CRfMdbxEv1dX2UKGgGR0Bh4dXgccU/aAdN6ANoCEdAkX56/7BO6HV9lChoBkdAZKf+wTufEmgHTegDaAhHQJGDWrNnoPl1fZQoaAZHQGOPxhDw6QxoB03oA2gIR0CRhZGSZBszdX2UKGgGR0BjH4VbiZOSaAdN6ANoCEdAkYemQKa5PXV9lChoBkdAOEU4m1IAfmgHS6poCEdAkYez/+85CHV9lChoBkdAZXWlTm4iHWgHTegDaAhHQJGKO7Bfrrx1fZQoaAZHQGSaZX2dupFoB03oA2gIR0CRixA44p+ddX2UKGgGR0BkYgdjoZAIaAdN6ANoCEdAkZFVKsdT53V9lChoBkdAZk9FS88La2gHTegDaAhHQJGRqTY/Vy51fZQoaAZHQGNb+Vkc0choB03oA2gIR0CRkzKZ2IO6dX2UKGgGR0BQSWyon8baaAdLsmgIR0CRmwx8D0UXdX2UKGgGR0BitbeEZiuuaAdN6ANoCEdAkZu2BWgezXV9lChoBkdAZP69EkSmImgHTegDaAhHQJGcV9nbqQl1fZQoaAZHQGRkOZb6guhoB03oA2gIR0CRnN/IbOu8dX2UKGgGR0BnFFCRfWtmaAdN6ANoCEdAkaD6Wom5UnV9lChoBkdAZOpSZ0CA+mgHTegDaAhHQJGjb/1g6U91fZQoaAZHQF97D3M6ikBoB03oA2gIR0CRpnQOnVG1dX2UKGgGR0BhqGm3vx6OaAdN6ANoCEdAkbMXOv+wT3V9lChoBkdAcOB3hn8KomgHTcsBaAhHQJGzcBdUsFt1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d04ca45835e4354f25042ad7c7c6d45cace1fb5031eb235bced12d75757ae14
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a7680fdfc8a5fb83be17dc5e4f127b9161bc708f15341cce0549856d833c142
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (191 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 229.40593169269633, "std_reward": 63.46694717794767, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-21T15:33:33.357011"}