Upload NavyBayes.py
Browse files- NavyBayes.py +171 -0
NavyBayes.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import firebase_admin
|
2 |
+
from firebase_admin import credentials, firestore
|
3 |
+
from joblib import dump, load
|
4 |
+
import datetime
|
5 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
+
from sklearn.naive_bayes import MultinomialNB
|
7 |
+
import pandas as pd
|
8 |
+
from huggingface_hub import HfApi
|
9 |
+
|
10 |
+
# التهيئة مرة واحدة فقط
|
11 |
+
if not firebase_admin._apps:
|
12 |
+
# تأكد من وضع المسار الصحيح لملف التوثيق Firebase
|
13 |
+
cred = credentials.Certificate("D:/app-sentinel-7qnr19-firebase-adminsdk-kjmbe-f38e16a432.json")
|
14 |
+
firebase_admin.initialize_app(cred)
|
15 |
+
|
16 |
+
db = firestore.client()
|
17 |
+
|
18 |
+
# تحميل النموذج الحالي والمحول
|
19 |
+
try:
|
20 |
+
model = load('model.joblib')
|
21 |
+
vectorizer = load('vectorizer.joblib')
|
22 |
+
print("Model and vectorizer loaded successfully.")
|
23 |
+
except Exception as e:
|
24 |
+
model = None
|
25 |
+
vectorizer = None
|
26 |
+
print(f"Model and vectorizer not found. You need to train the model. Error: {e}")
|
27 |
+
|
28 |
+
# 1. وظيفة لتحليل وتصنيف الرسائل وتخزينها في Firestore
|
29 |
+
def classify_and_store_message(message):
|
30 |
+
global model, vectorizer
|
31 |
+
try:
|
32 |
+
if not model or not vectorizer:
|
33 |
+
raise ValueError("Model or vectorizer not loaded. Train or load the model first.")
|
34 |
+
|
35 |
+
# تحويل الرسالة إلى سمات رقمية
|
36 |
+
message_vector = vectorizer.transform([message])
|
37 |
+
classification = model.predict(message_vector)[0]
|
38 |
+
|
39 |
+
# إعداد البيانات للتخزين
|
40 |
+
message_data = {
|
41 |
+
'text': message,
|
42 |
+
'classification': classification,
|
43 |
+
'timestamp': datetime.datetime.now()
|
44 |
+
}
|
45 |
+
|
46 |
+
# تخزين الرسالة في مجموعة Firestore حسب التصنيف
|
47 |
+
if classification == "spam_phishing":
|
48 |
+
db.collection('spam').add(message_data)
|
49 |
+
elif classification == "news_phishing":
|
50 |
+
db.collection('news').add(message_data)
|
51 |
+
elif classification == "advertisement_phishing":
|
52 |
+
db.collection('advertisement').add(message_data)
|
53 |
+
elif classification == "social_phishing":
|
54 |
+
db.collection('social').add(message_data)
|
55 |
+
|
56 |
+
# تخزين الرسالة في مجموعة 'all_messages' لجميع الرسائل
|
57 |
+
db.collection('all_messages').add(message_data)
|
58 |
+
|
59 |
+
# تخزين الرسالة في مجموعة 'recently_analyzed_messages' للرسائل الحديثة
|
60 |
+
db.collection('recently_analyzed_messages').add(message_data)
|
61 |
+
|
62 |
+
print(f"Message classified as {classification} and stored in Firestore.")
|
63 |
+
return classification
|
64 |
+
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Error classifying message: {e}")
|
67 |
+
return None
|
68 |
+
|
69 |
+
# 2. رفع النموذج إلى Hugging Face Hub
|
70 |
+
def upload_model_to_huggingface():
|
71 |
+
try:
|
72 |
+
# استخدام HfApi لرفع النموذج
|
73 |
+
api = HfApi()
|
74 |
+
|
75 |
+
# تحديد اسم النموذج والملفات
|
76 |
+
model_name = "Noufy/https-api_inference.huggingface.comodels-Noufy-naive_bayes_sms"
|
77 |
+
model_path = "model.joblib"
|
78 |
+
vectorizer_path = "vectorizer.joblib"
|
79 |
+
|
80 |
+
# رفع النموذج إلى Hugging Face
|
81 |
+
api.upload_file(
|
82 |
+
path_or_fileobj=model_path,
|
83 |
+
path_in_repo=f"{model_name}/model.joblib",
|
84 |
+
repo_id="Noufy/https-api_inference.huggingface.comodels-Noufy-naive_bayes_sms", # ضع اسم المستخدم واسم المشروع
|
85 |
+
repo_type="model"
|
86 |
+
)
|
87 |
+
|
88 |
+
api.upload_file(
|
89 |
+
path_or_fileobj=vectorizer_path,
|
90 |
+
path_in_repo=f"{model_name}/vectorizer.joblib",
|
91 |
+
repo_id="Noufy/https-api_inference.huggingface.comodels-Noufy-naive_bayes_sms",
|
92 |
+
repo_type="model"
|
93 |
+
)
|
94 |
+
|
95 |
+
print("Model and vectorizer uploaded successfully to Hugging Face.")
|
96 |
+
|
97 |
+
except Exception as e:
|
98 |
+
print(f"Error uploading model: {e}")
|
99 |
+
|
100 |
+
# 3. تحديث النموذج مع بيانات جديدة
|
101 |
+
def update_model_with_new_data(new_messages, new_labels):
|
102 |
+
global model, vectorizer
|
103 |
+
try:
|
104 |
+
# تحميل البيانات الحالية
|
105 |
+
data = {
|
106 |
+
'message': new_messages,
|
107 |
+
'label': new_labels
|
108 |
+
}
|
109 |
+
df_new = pd.DataFrame(data)
|
110 |
+
|
111 |
+
# تحديث المحول والنموذج
|
112 |
+
if vectorizer is None or model is None:
|
113 |
+
vectorizer = TfidfVectorizer()
|
114 |
+
X_new = vectorizer.fit_transform(df_new['message'])
|
115 |
+
else:
|
116 |
+
X_new = vectorizer.transform(df_new['message'])
|
117 |
+
|
118 |
+
# جمع البيانات الجديدة مع القديمة وإعادة التدريب
|
119 |
+
y_new = df_new['label']
|
120 |
+
if model is None:
|
121 |
+
model = MultinomialNB()
|
122 |
+
model.partial_fit(X_new, y_new, classes=['spam_phishing', 'social_phishing', 'news_phishing', 'advertisement_phishing'])
|
123 |
+
|
124 |
+
# حفظ النموذج ا��جديد
|
125 |
+
dump(model, 'model.joblib')
|
126 |
+
dump(vectorizer, 'vectorizer.joblib')
|
127 |
+
print("Model updated and saved successfully.")
|
128 |
+
|
129 |
+
except Exception as e:
|
130 |
+
print(f"Error updating model: {e}")
|
131 |
+
|
132 |
+
# تشغيل رفع النموذج إلى Hugging Face
|
133 |
+
upload_model_to_huggingface()
|
134 |
+
|
135 |
+
# 4. دالة لاختبار النظام
|
136 |
+
def test_system():
|
137 |
+
test_messages = [
|
138 |
+
"Win a free vacation now!",
|
139 |
+
"Breaking news: Major stock updates today.",
|
140 |
+
"Don't forget our meeting tomorrow at 10 AM.",
|
141 |
+
"Click here to secure your bank account now!",
|
142 |
+
"Exclusive offers just for you, buy now!"
|
143 |
+
]
|
144 |
+
|
145 |
+
for msg in test_messages:
|
146 |
+
classification = classify_and_store_message(msg)
|
147 |
+
print(f"Message: '{msg}' -> Classified as: {classification}")
|
148 |
+
|
149 |
+
# 5. وظيفة للتصحيح اليدوي
|
150 |
+
def correct_classification(message_id, correct_label):
|
151 |
+
try:
|
152 |
+
# جلب الرسالة من Firebase
|
153 |
+
message_ref = db.collection('view_history').document(message_id)
|
154 |
+
message_data = message_ref.get().to_dict()
|
155 |
+
|
156 |
+
if not message_data:
|
157 |
+
print("Message not found.")
|
158 |
+
return
|
159 |
+
|
160 |
+
# تحديث التصنيف في Firebase
|
161 |
+
message_data['classification'] = correct_label
|
162 |
+
message_ref.update({'classification': correct_label})
|
163 |
+
|
164 |
+
# إضافة البيانات إلى نموذج التدريب الجديد
|
165 |
+
update_model_with_new_data([message_data['text']], [correct_label])
|
166 |
+
print(f"Message classification corrected to {correct_label} and model updated.")
|
167 |
+
except Exception as e:
|
168 |
+
print(f"Error correcting classification: {e}")
|
169 |
+
|
170 |
+
# اختبار
|
171 |
+
test_system()
|