--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Output_LayoutLMv3_v1 results: [] --- # Output_LayoutLMv3_v1 This model is a fine-tuned version of [microsoft/layoutlmv3-large](https://huggingface.co/microsoft/layoutlmv3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2030 - Precision: 0.8 - Recall: 0.8319 - F1: 0.8156 - Accuracy: 0.9743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.27 | 100 | 0.3343 | 0.2051 | 0.0354 | 0.0604 | 0.8943 | | No log | 4.55 | 200 | 0.1934 | 0.7143 | 0.6858 | 0.6998 | 0.9524 | | No log | 6.82 | 300 | 0.1541 | 0.7344 | 0.7832 | 0.7580 | 0.9590 | | No log | 9.09 | 400 | 0.1375 | 0.7542 | 0.8009 | 0.7768 | 0.9648 | | 0.2233 | 11.36 | 500 | 0.1323 | 0.7915 | 0.8230 | 0.8069 | 0.9695 | | 0.2233 | 13.64 | 600 | 0.1395 | 0.8 | 0.8142 | 0.8070 | 0.9695 | | 0.2233 | 15.91 | 700 | 0.1495 | 0.7773 | 0.8186 | 0.7974 | 0.9686 | | 0.2233 | 18.18 | 800 | 0.1444 | 0.8103 | 0.8319 | 0.8210 | 0.9752 | | 0.2233 | 20.45 | 900 | 0.1732 | 0.7550 | 0.8319 | 0.7916 | 0.9676 | | 0.0375 | 22.73 | 1000 | 0.1553 | 0.7966 | 0.8319 | 0.8139 | 0.9743 | | 0.0375 | 25.0 | 1100 | 0.1639 | 0.7924 | 0.8274 | 0.8095 | 0.9724 | | 0.0375 | 27.27 | 1200 | 0.1598 | 0.8034 | 0.8319 | 0.8174 | 0.9752 | | 0.0375 | 29.55 | 1300 | 0.1723 | 0.8069 | 0.8319 | 0.8192 | 0.9743 | | 0.0375 | 31.82 | 1400 | 0.1929 | 0.7810 | 0.8363 | 0.8077 | 0.9724 | | 0.0188 | 34.09 | 1500 | 0.1940 | 0.7866 | 0.8319 | 0.8086 | 0.9714 | | 0.0188 | 36.36 | 1600 | 0.1904 | 0.7932 | 0.8319 | 0.8121 | 0.9724 | | 0.0188 | 38.64 | 1700 | 0.1910 | 0.7899 | 0.8319 | 0.8103 | 0.9724 | | 0.0188 | 40.91 | 1800 | 0.2083 | 0.7801 | 0.8319 | 0.8051 | 0.9705 | | 0.0188 | 43.18 | 1900 | 0.1880 | 0.8 | 0.8319 | 0.8156 | 0.9743 | | 0.0123 | 45.45 | 2000 | 0.1902 | 0.8069 | 0.8319 | 0.8192 | 0.9752 | | 0.0123 | 47.73 | 2100 | 0.1894 | 0.8095 | 0.8274 | 0.8184 | 0.9752 | | 0.0123 | 50.0 | 2200 | 0.1833 | 0.8210 | 0.8319 | 0.8264 | 0.9771 | | 0.0123 | 52.27 | 2300 | 0.1911 | 0.8069 | 0.8319 | 0.8192 | 0.9752 | | 0.0123 | 54.55 | 2400 | 0.1972 | 0.8 | 0.8319 | 0.8156 | 0.9743 | | 0.0086 | 56.82 | 2500 | 0.1924 | 0.8139 | 0.8319 | 0.8228 | 0.9762 | | 0.0086 | 59.09 | 2600 | 0.1983 | 0.8 | 0.8319 | 0.8156 | 0.9743 | | 0.0086 | 61.36 | 2700 | 0.2033 | 0.8 | 0.8319 | 0.8156 | 0.9743 | | 0.0086 | 63.64 | 2800 | 0.2039 | 0.8 | 0.8319 | 0.8156 | 0.9743 | | 0.0086 | 65.91 | 2900 | 0.2026 | 0.8 | 0.8319 | 0.8156 | 0.9743 | | 0.0084 | 68.18 | 3000 | 0.2030 | 0.8 | 0.8319 | 0.8156 | 0.9743 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2