File size: 74,366 Bytes
2010c83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 |
"""
Adapted from
[MosaiclML](https://github.com/mosaicml/examples.git) and
[minGPT](https://github.com/karpathy/minGPT.git)
"""
from __future__ import annotations
import logging
import math
import sys
from abc import abstractmethod
from collections import defaultdict
from functools import partial
from typing import (
Callable,
Dict,
Iterable,
List,
NamedTuple,
Optional,
Sequence,
Set,
Tuple,
cast,
)
import torch
import torch.backends.cuda
import torch.nn as nn
import torch.nn.functional as F
from torch import einsum
from transformers.modeling_outputs import BaseModelOutputWithPast
from .aliases import PathOrStr
from .beam_search import BeamSearch, Constraint, FinalSequenceScorer, Sampler
from .config import (
ActivationCheckpointingStrategy,
ActivationType,
BlockType,
CheckpointType,
FSDPWrapStrategy,
LayerNormType,
ModelConfig,
)
from .exceptions import OLMoConfigurationError
from .initialization import ModuleType, init_weights
from .torch_util import ensure_finite_
if sys.version_info.minor > 8:
from collections.abc import MutableMapping
elif sys.version_info.minor == 8:
from typing import MutableMapping
else:
raise SystemExit("This script supports Python 3.8 or higher")
__all__ = [
"LayerNormBase",
"LayerNorm",
"RMSLayerNorm",
"RotaryEmbedding",
"Activation",
"GELU",
"ReLU",
"SwiGLU",
"BitLinear158",
"OLMoBlock",
"OLMoSequentialBlock",
"OLMoParallelBlock",
"OLMo",
"OLMoOutput",
"OLMoGenerateOutput",
]
log = logging.getLogger(__name__)
def activation_checkpoint_function(cfg: ModelConfig):
preserve_rng_state = (
(cfg.attention_dropout == 0.0) and (cfg.embedding_dropout == 0.0) and (cfg.residual_dropout == 0.0)
)
from torch.utils.checkpoint import checkpoint
return partial(
checkpoint,
preserve_rng_state=preserve_rng_state,
use_reentrant=False,
)
class BufferCache(dict, MutableMapping[str, torch.Tensor]):
"""
Cache for attention biases and other things that would normally be stored as buffers.
We avoid using buffers because we've run into various issues doing so with FSDP.
In general it appears the way FSDP handles buffers is not well-defined.
It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid
since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into
NaNs when they're synchronized due to casting or some other issue.
"""
def _non_meta_init_device(config: ModelConfig) -> torch.device:
if config.init_device is not None and config.init_device != "meta":
return torch.device(config.init_device)
else:
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Dropout(nn.Dropout):
def forward(self, input: torch.Tensor) -> torch.Tensor:
if self.p == 0.0:
return input
else:
return F.dropout(input, self.p, self.training, self.inplace)
class LayerNormBase(nn.Module):
def __init__(
self,
config: ModelConfig,
*,
size: Optional[int] = None,
elementwise_affine: Optional[bool] = True,
eps: float = 1e-05,
):
super().__init__()
self.config = config
self.eps = eps
self.normalized_shape = (size or config.d_model,)
if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine):
self.weight = nn.Parameter(torch.ones(self.normalized_shape, device=config.init_device))
use_bias = self.config.bias_for_layer_norm
if use_bias is None:
use_bias = self.config.include_bias
if use_bias:
self.bias = nn.Parameter(torch.zeros(self.normalized_shape, device=config.init_device))
else:
self.register_parameter("bias", None)
else:
self.register_parameter("bias", None)
self.register_parameter("weight", None)
@abstractmethod
def forward(self, x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@classmethod
def build(cls, config: ModelConfig, size: Optional[int] = None, **kwargs) -> LayerNormBase:
if config.layer_norm_type == LayerNormType.default:
return LayerNorm(config, size=size, low_precision=False, **kwargs)
elif config.layer_norm_type == LayerNormType.low_precision:
return LayerNorm(config, size=size, low_precision=True, **kwargs)
elif config.layer_norm_type == LayerNormType.rms:
return RMSLayerNorm(config, size=size, **kwargs)
else:
raise NotImplementedError(f"Unknown LayerNorm type: '{config.layer_norm_type}'")
def _cast_if_autocast_enabled(self, tensor: torch.Tensor, dtype: Optional[torch.dtype] = None) -> torch.Tensor:
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
# `is_autocast_cpu_enabled()` for CPU autocast.
# See https://github.com/pytorch/pytorch/issues/110966.
if tensor.device.type == "cuda" and torch.is_autocast_enabled():
return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_gpu_dtype())
elif tensor.device.type == "cpu" and torch.is_autocast_cpu_enabled():
return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_cpu_dtype())
else:
return tensor
def reset_parameters(self):
if self.weight is not None:
torch.nn.init.ones_(self.weight) # type: ignore
if self.bias is not None:
torch.nn.init.zeros_(self.bias) # type: ignore
class LayerNorm(LayerNormBase):
"""
The default :class:`LayerNorm` implementation which can optionally run in low precision.
"""
def __init__(
self,
config: ModelConfig,
size: Optional[int] = None,
low_precision: bool = False,
elementwise_affine: Optional[bool] = None,
eps: float = 1e-05,
):
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
self.low_precision = low_precision
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.low_precision:
module_device = x.device
downcast_x = self._cast_if_autocast_enabled(x)
downcast_weight = (
self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
)
downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
with torch.autocast(enabled=False, device_type=module_device.type):
return F.layer_norm(
downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps
)
else:
return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps)
class RMSLayerNorm(LayerNormBase):
"""
RMS layer norm, a simplified :class:`LayerNorm` implementation
"""
def __init__(
self,
config: ModelConfig,
size: Optional[int] = None,
elementwise_affine: Optional[bool] = None,
eps: float = 1e-5,
):
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
def forward(self, x: torch.Tensor) -> torch.Tensor:
with torch.autocast(enabled=False, device_type=x.device.type):
og_dtype = x.dtype
x = x.to(torch.float32)
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.eps)
x = x.to(og_dtype)
if self.weight is not None:
if self.bias is not None:
return self.weight * x + self.bias
else:
return self.weight * x
else:
return x
class RotaryEmbedding(nn.Module):
"""
[Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864).
"""
def __init__(self, config: ModelConfig, cache: BufferCache):
super().__init__()
self.config = config
self.__cache = cache
# Warm up cache.
self.get_rotary_embedding(config.max_sequence_length, _non_meta_init_device(config))
def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
if (
(pos_sin := self.__cache.get("rope_pos_sin")) is not None
and (pos_cos := self.__cache.get("rope_pos_cos")) is not None
and pos_sin.shape[-2] >= seq_len
and pos_cos.shape[-2] >= seq_len
):
if pos_sin.device != device:
pos_sin = pos_sin.to(device)
self.__cache["rope_pos_sin"] = pos_sin
if pos_cos.device != device:
pos_cos = pos_cos.to(device)
self.__cache["rope_pos_cos"] = pos_cos
return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :]
with torch.autocast(device.type, enabled=False):
dim = self.config.d_model // self.config.n_heads
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim))
seq = torch.arange(seq_len, device=device, dtype=torch.float)
freqs = einsum("i , j -> i j", seq, inv_freq)
positions = torch.cat((freqs, freqs), dim=-1)
pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :]
self.__cache["rope_pos_sin"] = pos_sin
self.__cache["rope_pos_cos"] = pos_cos
return pos_sin, pos_cos
def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
B, nh, T, hs = x.size()
x = x.view(B, nh, T, 2, hs // 2)
x1, x2 = x.unbind(dim=-2)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype)
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
if self.config.rope_full_precision:
q_, k_ = q.float(), k.float()
else:
q_, k_ = q, k
with torch.autocast(q.device.type, enabled=False):
query_len, key_len = q_.shape[-2], k_.shape[-2] # could be different if layer_past not None
pos_sin, pos_cos = self.get_rotary_embedding(key_len, q_.device)
pos_sin = pos_sin.type_as(q_)
pos_cos = pos_cos.type_as(q_)
q_ = self.apply_rotary_pos_emb(
pos_sin[:, :, key_len - query_len : key_len, :],
pos_cos[:, :, key_len - query_len : key_len, :],
q_,
)
k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_)
return q_.type_as(q), k_.type_as(k)
class Activation(nn.Module):
def __init__(self, config: ModelConfig):
super().__init__()
self.config = config
@abstractmethod
def forward(self, x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@property
@abstractmethod
def output_multiplier(self) -> float:
raise NotImplementedError
@classmethod
def build(cls, config: ModelConfig) -> Activation:
if config.activation_type == ActivationType.gelu:
return cast(Activation, GELU(approximate="none"))
elif config.activation_type == ActivationType.relu:
return cast(Activation, ReLU(inplace=False))
elif config.activation_type == ActivationType.swiglu:
return SwiGLU(config)
else:
raise NotImplementedError(f"Unknown activation: '{config.activation_type}'")
class GELU(nn.GELU):
@property
def output_multiplier(self) -> float:
return 1.0
class ReLU(nn.ReLU):
@property
def output_multiplier(self) -> float:
return 1.0
class SwiGLU(Activation):
def forward(self, x: torch.Tensor) -> torch.Tensor:
x, gate = x.chunk(2, dim=-1)
return F.silu(gate) * x
@property
def output_multiplier(self) -> float:
return 0.5
def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor:
att_bias = torch.triu(
torch.ones(seq_len, seq_len, device=device, dtype=torch.float),
diagonal=1,
)
att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min)
return att_bias.view(1, 1, seq_len, seq_len) # type: ignore
def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor:
if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len:
if causal_bias.device != device:
causal_bias = causal_bias.to(device)
cache["causal_attention_bias"] = causal_bias
return causal_bias
with torch.autocast(device.type, enabled=False):
causal_bias = causal_attention_bias(seq_len, device)
cache["causal_attention_bias"] = causal_bias
return causal_bias
def alibi_attention_bias(seq_len: int, config: ModelConfig, device: torch.device) -> torch.FloatTensor:
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, 1, seq_len)
# shape: (1, 1, seq_len, seq_len)
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, seq_len, 1)
alibi_bias.abs_().mul_(-1)
# shape: (n_heads,)
m = torch.arange(1, config.n_heads + 1, dtype=torch.float, device=device)
m.mul_(config.alibi_bias_max / config.n_heads)
# shape: (1, n_heads, seq_len, seq_len)
return alibi_bias * (1.0 / (2 ** m.view(1, config.n_heads, 1, 1))) # type: ignore
def activation_quant(x):
"""Per−token quantization to 8 bits. No grouping is needed for quantization.
Args:
x: an activation tensor with shape [n, d]
Returns:
y: a quantized activation tensor with shape [n, d]
"""
scale = 127.0 / x.abs().max(dim=-1, keepdim=True).values.clamp_(min=1e-5)
y = (x * scale).round().clamp_(-128, 127) / scale
return y
def weight_quant(w):
"""Per−tensor quantization to 1.58 bits. No grouping is needed for quantization.
Args:
w: a weight tensor with shape [d, k]
Returns:
u: a quantized weight with shape [d, k]
"""
scale = 1.0 / w.abs().mean().clamp_(min=1e-5)
u = (w * scale).round().clamp_(-1, 1) / scale
return u
class BitLinear158(nn.Linear):
"""
This is only for training, and kernel optimization is needed for efficiency.
"""
def __init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None, config=None):
super().__init__(in_features, out_features, bias, device, dtype)
self.norm = RMSLayerNorm(config, elementwise_affine=False)
def forward(self, x):
"""
Args:
x: an input tensor with shape [n, d]
Returns:
y: an output tensor with shape [n, d]
"""
w = self.weight # a weight tensor with shape [d, k]
x_norm = self.norm(x)
# Atrick for implementing Straight−Through−Estimator (STE) using detach()
x_quant = x_norm + (activation_quant(x_norm) - x_norm).detach()
w_quant = w + (weight_quant(w) - w).detach()
y = F.linear(x_quant, w_quant)
return y
class OLMoBlock(nn.Module):
"""
A base class for transformer block implementations.
"""
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
super().__init__()
self.layer_id = layer_id
self.config = config
self.hidden_size = (
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
)
self.__cache = cache
assert config.d_model % config.n_heads == 0
self._activation_checkpoint_fn = None
Linear = BitLinear158 if config.ternary else nn.Linear
# Dropout.
self.dropout = Dropout(config.residual_dropout)
# Layer norms.
self.k_norm: Optional[LayerNormBase] = None
self.q_norm: Optional[LayerNormBase] = None
if config.attention_layer_norm:
self.k_norm = LayerNormBase.build(
config,
size=config.d_model // config.n_heads if config.multi_query_attention else None,
elementwise_affine=config.attention_layer_norm_with_affine,
)
self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine)
# Make sure QKV clip coefficient is positive, otherwise it's not well-defined.
if config.clip_qkv is not None:
assert config.clip_qkv > 0
# Activation function.
self.act = Activation.build(config)
assert (self.act.output_multiplier * self.hidden_size) % 1 == 0
# Attention output projection.
self.attn_out = Linear(
config.d_model, config.d_model, bias=config.include_bias, device=config.init_device,
config=config
)
# Feed-forward output projection.
self.ff_out = Linear(
int(self.act.output_multiplier * self.hidden_size),
config.d_model,
bias=config.include_bias,
device=config.init_device,
config=config,
)
self.ff_out._is_residual = True # type: ignore
# Rotary embeddings.
if self.config.rope:
self.rotary_emb = RotaryEmbedding(config, self.__cache)
def reset_parameters(self):
if self.k_norm is not None:
self.k_norm.reset_parameters()
if self.q_norm is not None:
self.q_norm.reset_parameters()
init_weights(
self.config,
self.attn_out,
d=self.config.d_model,
layer_id=self.layer_id,
type_of_module=ModuleType.out_module,
)
init_weights(
self.config,
self.ff_out,
d=self.ff_out.in_features,
layer_id=self.layer_id,
type_of_module=ModuleType.out_module,
)
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
if strategy == ActivationCheckpointingStrategy.fine_grained:
self._activation_checkpoint_fn = activation_checkpoint_function(self.config)
else:
self._activation_checkpoint_fn = None
@classmethod
def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor:
target_dtype = input_dtype
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
# `is_autocast_cpu_enabled()` for CPU autocast.
# See https://github.com/pytorch/pytorch/issues/110966.
if bias.device.type == "cuda" and torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled():
target_dtype = torch.get_autocast_cpu_dtype()
if bias.dtype != target_dtype:
bias = bias.to(target_dtype)
ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False)
return bias
def _scaled_dot_product_attention(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
) -> torch.Tensor:
"""
Computes scaled dot product attention on query, key and value tensors, using an optional
attention mask if passed, and applying dropout if a probability greater than 0.0 is specified.
This method is based on PyTorch's `scaled_dot_product_attention`.
"""
return F.scaled_dot_product_attention(
q,
k,
v,
attn_mask=attn_mask,
dropout_p=dropout_p,
is_causal=is_causal,
)
def attention(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attention_bias: Optional[torch.Tensor] = None,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
B, T, C = q.size() # batch size, sequence length, d_model
dtype = k.dtype
# Optionally apply layer norm to keys and queries.
if self.q_norm is not None and self.k_norm is not None:
q = self.q_norm(q).to(dtype=dtype)
k = self.k_norm(k).to(dtype=dtype)
# Move head forward to be next to the batch dim.
# shape: (B, nh, T, hs)
q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
if self.config.multi_query_attention:
# shape: (B, 1, T, hs)
k = k.view(B, T, 1, C // self.config.n_heads).transpose(1, 2)
# shape: (B, 1, T, hs)
v = v.view(B, T, 1, C // self.config.n_heads).transpose(1, 2)
else:
# shape: (B, nh, T, hs)
k = k.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
# shape: (B, nh, T, hs)
v = v.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
if layer_past is not None:
past_key, past_value = layer_past
k = torch.cat((past_key, k), dim=-2)
v = torch.cat((past_value, v), dim=-2)
present = (k, v) if use_cache else None
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
if self.config.rope:
# Apply rotary embeddings.
q, k = self.rotary_emb(q, k)
if attention_bias is not None:
# Resize and cast attention bias.
# The current dtype of the attention bias might not match the dtype that the SDP attn function will
# run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding
# as down-casting the attention bias to the autocast precision will result in -infs, which will
# cause the SDP attn function to produce NaNs.
attention_bias = self._cast_attn_bias(
attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype
)
# Get the attention scores.
# shape: (B, nh, T, hs)
att = self._scaled_dot_product_attention(
q,
k,
v,
attn_mask=attention_bias,
dropout_p=0.0 if not self.training else self.config.attention_dropout,
is_causal=attention_bias is None,
)
# Re-assemble all head outputs side-by-side.
att = att.transpose(1, 2).contiguous().view(B, T, C)
# Apply output projection.
return self.attn_out(att), present
@abstractmethod
def forward(
self,
x: torch.Tensor,
attention_bias: Optional[torch.FloatTensor] = None,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
raise NotImplementedError
@classmethod
def build(cls, layer_id: int, config: ModelConfig, cache: BufferCache) -> OLMoBlock:
if config.block_type == BlockType.sequential:
return OLMoSequentialBlock(layer_id, config, cache)
elif config.block_type == BlockType.parallel:
return OLMoParallelBlock(layer_id, config, cache)
elif config.block_type == BlockType.llama:
return OLMoLlamaBlock(layer_id, config, cache)
else:
raise NotImplementedError(f"Unknown block type: '{config.block_type}'")
class OLMoSequentialBlock(OLMoBlock):
"""
This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
(plus another skip connection).
"""
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
super().__init__(layer_id, config, cache)
# Layer norms.
self.attn_norm = LayerNorm.build(config)
self.ff_norm = LayerNorm.build(config)
Linear = BitLinear158 if config.ternary else nn.Linear
# Attention input projection. Projects x -> (q, k, v)
if config.multi_query_attention:
self.fused_dims = (config.d_model, config.d_model // config.n_heads, config.d_model // config.n_heads)
else:
self.fused_dims = (config.d_model, config.d_model, config.d_model)
self.att_proj = Linear(
config.d_model, sum(self.fused_dims), bias=config.include_bias, device=config.init_device,
config=config
)
# Feed-forward input projection.
self.ff_proj = Linear(
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device,
config=config
)
def reset_parameters(self):
super().reset_parameters()
self.attn_norm.reset_parameters()
self.ff_norm.reset_parameters()
# NOTE: the standard deviation for these weights does not depend on the layer.
init_weights(
self.config, self.att_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
)
init_weights(
self.config, self.ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
)
def forward(
self,
x: torch.Tensor,
attention_bias: Optional[torch.Tensor] = None,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
# Get query, key, value projections.
# shape:
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
# - for multi-query attn q: (batch_size, seq_len, d_model)
# k, v: (batch_size, seq_len, d_model // n_heads)
if self._activation_checkpoint_fn is not None:
qkv = self.att_proj(self._activation_checkpoint_fn(self.attn_norm, x))
else:
qkv = self.att_proj(self.attn_norm(x))
if self.config.clip_qkv is not None:
qkv.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
q, k, v = qkv.split(self.fused_dims, dim=-1)
# Get attention scores.
if self._activation_checkpoint_fn is not None:
att, cache = self._activation_checkpoint_fn( # type: ignore
self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache
)
else:
att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache)
# Add attention scores.
# shape: (B, T, C)
x = x + self.dropout(att)
# Add feed-forward projection.
# shape: (batch_size, seq_len, d_model)
og_x = x
if self._activation_checkpoint_fn is not None:
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
else:
x = self.ff_norm(x)
x = self.ff_proj(x)
if self._activation_checkpoint_fn is not None:
x = self._activation_checkpoint_fn(self.act, x) # type: ignore
else:
x = self.act(x)
x = self.ff_out(x)
x = self.dropout(x)
x = og_x + x
return x, cache
class OLMoParallelBlock(OLMoBlock):
"""
This is a transformer block where the output is computed as ``MLP(LN(x)) + Attention(LN(x))``
as in the PaLM architecture, as opposed to the typical ``MLP(LN(x + Attention(LN(x))))``
as in :class:`OLMoSequentialBlock` (ignoring some skip connections).
The decoupling of the MLP and Attention functions allow us to fuse the separate input projections
into a single linear layer to increase throughput. In this configuration it's also straight-forward
to fuse the output projections, but we found that didn't help.
"""
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
super().__init__(layer_id, config, cache)
self.norm = LayerNorm.build(config)
Linear = BitLinear158 if config.ternary else nn.Linear
# Fused attention and feed-forward projection.
# NOTE: we could also fuse the attention and feed-forward output projections but we
# found that didn't help, possibly because of the overhead of joining the `att` and
# `ff` activations together. See https://github.com/allenai/LLM/pull/79 for details.
if config.multi_query_attention:
self.fused_dims = (
config.d_model,
config.d_model // config.n_heads,
config.d_model // config.n_heads,
self.hidden_size,
)
else:
self.fused_dims = (config.d_model, config.d_model, config.d_model, self.hidden_size)
self.fused_attn_ff_proj = Linear(
config.d_model, sum(self.fused_dims), bias=config.include_bias, device=config.init_device,
config=config
)
def reset_parameters(self):
super().reset_parameters()
self.norm.reset_parameters()
# NOTE: the standard deviation for these weights does not depend on the layer.
init_weights(
self.config,
self.fused_attn_ff_proj,
d=self.config.d_model,
layer_id=None,
type_of_module=ModuleType.in_module,
)
def forward(
self,
x: torch.Tensor,
attention_bias: Optional[torch.Tensor] = None,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
# Get query, key, value, and feed-forward projections.
# shape of q, k, v:
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
# - for multi-query attn q: (batch_size, seq_len, d_model)
# k, v: (batch_size, seq_len, d_model // n_heads)
# shape of ff: (batch_size, seq_len, hidden_size)
if self._activation_checkpoint_fn is not None:
q, k, v, ff = self.fused_attn_ff_proj(self._activation_checkpoint_fn(self.norm, x)).split(
self.fused_dims, dim=-1
)
else:
q, k, v, ff = self.fused_attn_ff_proj(self.norm(x)).split(self.fused_dims, dim=-1)
if self.config.clip_qkv is not None:
q.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
k.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
v.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
# Get attention scores.
# shape: (B, T, C)
if self._activation_checkpoint_fn is not None:
att, cache = self._activation_checkpoint_fn( # type: ignore
self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache
)
else:
att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache)
# Apply output projections (and activation function) and sum the results.
# We keep these projections separate because we found that we got better throughput this
# way compared to fusing them.
if self._activation_checkpoint_fn is not None:
return (
x + self.dropout(self.ff_out(self._activation_checkpoint_fn(self.act, ff))) + self.dropout(att),
cache,
)
else:
return (
x + self.dropout(self.ff_out(self.act(ff))) + self.dropout(att),
cache,
)
class OLMoLlamaBlock(OLMoBlock):
"""
This is a transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
(plus another skip connection). This block is similar to `OLMoSequentialBlock`
but some operations have slightly different implementations to imitate the
behavior of Llama.
"""
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
super().__init__(layer_id, config, cache)
# Layer norms.
self.attn_norm = LayerNorm.build(config)
self.ff_norm = LayerNorm.build(config)
self.__cache = cache
Linear = BitLinear158 if config.ternary else nn.Linear
# Attention input projection. Projects x -> (q, k, v)
if config.multi_query_attention:
q_proj_out_dim = config.d_model
k_proj_out_dim = config.d_model // config.n_heads
v_proj_out_dim = config.d_model // config.n_heads
else:
q_proj_out_dim = config.d_model
k_proj_out_dim = config.d_model
v_proj_out_dim = config.d_model
self.q_proj = Linear(
config.d_model, q_proj_out_dim, bias=config.include_bias, device=config.init_device,
config=config
)
self.k_proj = Linear(
config.d_model, k_proj_out_dim, bias=config.include_bias, device=config.init_device,
config=config
)
self.v_proj = Linear(
config.d_model, v_proj_out_dim, bias=config.include_bias, device=config.init_device,
config=config
)
# Feed-forward input projection.
self.ff_proj = Linear(
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device,
config=config
)
def reset_parameters(self):
super().reset_parameters()
if self.attn_norm:
self.attn_norm.reset_parameters()
self.ff_norm.reset_parameters()
# NOTE: the standard deviation for these weights does not depend on the layer.
init_weights(self.config, self.q_proj, d=self.config.d_model, layer_id=None)
init_weights(self.config, self.k_proj, d=self.config.d_model, layer_id=None)
init_weights(self.config, self.v_proj, d=self.config.d_model, layer_id=None)
init_weights(self.config, self.ff_proj, d=self.config.d_model, layer_id=None)
def _scaled_dot_product_attention(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
) -> torch.Tensor:
attn_weights = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(q.size(-1))
if is_causal:
assert attn_mask is None
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
attn_bias = get_causal_attention_bias(self.__cache, key_len, q.device)[:, :, :query_len, :key_len]
elif attn_mask is not None:
attn_bias = attn_mask.to(q.dtype)
else:
attn_bias = torch.zeros_like(attn_weights)
attn_weights += attn_bias
attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(q.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout_p)
return torch.matmul(attn_weights, v)
def forward(
self,
x: torch.Tensor,
attention_bias: Optional[torch.Tensor] = None,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
# Get query, key, value projections.
# shape:
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
# - for multi-query attn q: (batch_size, seq_len, d_model)
# k, v: (batch_size, seq_len, d_model // n_heads)
x_normed = self.attn_norm(x)
q = self.q_proj(x_normed)
k = self.k_proj(x_normed)
v = self.v_proj(x_normed)
if self.config.clip_qkv is not None:
q.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
k.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
v.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
# Get attention scores.
att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache)
# Add attention scores.
# shape: (B, T, C)
x = x + self.dropout(att)
# Add feed-forward projection.
# shape: (batch_size, seq_len, d_model)
og_x = x
if self._activation_checkpoint_fn is not None:
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
else:
x = self.ff_norm(x)
x = self.ff_proj(x)
if self._activation_checkpoint_fn is not None:
x = self._activation_checkpoint_fn(self.act, x) # type: ignore
else:
x = self.act(x)
x = self.ff_out(x)
x = self.dropout(x)
x = og_x + x
return x, cache
class OLMoOutput(NamedTuple):
logits: torch.FloatTensor
"""
A tensor of shape `(batch_size, seq_len, vocab_size)` representing the log probabilities
for the next token *before* normalization via (log) softmax.
"""
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]
"""
Attention keys and values from each block.
"""
hidden_states: Optional[Tuple[torch.Tensor]]
"""
Hidden states from each block.
"""
class OLMoGenerateOutput(NamedTuple):
token_ids: torch.LongTensor
"""
The generated token IDs, a tensor of shape `(batch_size, beam_size, max_steps)`.
These do *not* include the original input IDs.
"""
scores: torch.FloatTensor
"""
The scores of the generated sequences, a tensor of shape `(batch_size, beam_size)`.
"""
class OLMoBlockGroup(nn.ModuleList):
def __init__(self, config: ModelConfig, layer_offset: int, modules: Optional[Iterable[nn.Module]] = None):
super().__init__(modules)
self.config = config
self.layer_offset = layer_offset
self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None
self._activation_checkpoint_fn = activation_checkpoint_function(self.config)
def forward(
self,
x: torch.Tensor,
attention_bias: Optional[torch.FloatTensor] = None,
layers_past: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[List[Tuple[torch.Tensor, torch.Tensor]]]]:
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
for block_idx, block in enumerate(self):
layer_past = None if layers_past is None else layers_past[block_idx]
block_idx += self.layer_offset
if (
(self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.whole_layer)
or (
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_two
and block_idx % 2 == 0
)
or (
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_three
and block_idx % 3 == 0
)
or (
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_four
and block_idx % 4 == 0
)
):
# shape: (batch_size, seq_len, d_model)
x, cache = self._activation_checkpoint_fn( # type: ignore
block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache
)
else:
# shape: (batch_size, seq_len, d_model)
x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache)
if attn_key_values is not None:
assert cache is not None
attn_key_values.append(cache)
return x, attn_key_values
def reset_parameters(self):
for block in self:
block.reset_parameters()
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
self.activation_checkpointing_strategy = strategy
for block in self:
block.set_activation_checkpointing(strategy)
class OLMo(nn.Module):
def __init__(self, config: ModelConfig, init_params: bool = True):
super().__init__()
self.config = config
self.__cache = BufferCache()
# Validate config.
if self.config.alibi and self.config.flash_attention:
raise OLMoConfigurationError("ALiBi is currently not supported with FlashAttention")
if self.config.alibi and self.config.rope:
raise OLMoConfigurationError("ALiBi and RoPE are mutually exclusive")
if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size:
if self.config.embedding_size < self.config.vocab_size:
raise OLMoConfigurationError("embedding size should be at least as big as vocab size")
elif self.config.embedding_size % 128 != 0:
import warnings
warnings.warn(
"Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning
)
self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None
self._activation_checkpoint_fn: Callable = activation_checkpoint_function(self.config)
if not (
0 < self.config.block_group_size <= self.config.n_layers
and self.config.n_layers % self.config.block_group_size == 0
):
raise OLMoConfigurationError("n layers must be divisible by block group size")
torch.backends.cuda.enable_flash_sdp(self.config.flash_attention)
torch.backends.cuda.enable_mem_efficient_sdp(False) # this is super slow so make sure torch won't use it
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(
config.embedding_size or config.vocab_size, config.d_model, device=config.init_device
),
emb_drop=Dropout(config.embedding_dropout),
ln_f=LayerNorm.build(config),
)
)
blocks = [OLMoBlock.build(i, config, self.__cache) for i in range(config.n_layers)]
if self.config.block_group_size > 1:
block_groups = [
OLMoBlockGroup(config, i, blocks[i : i + config.block_group_size])
for i in range(0, config.n_layers, config.block_group_size)
]
self.transformer.update({"block_groups": nn.ModuleList(block_groups)})
else:
self.transformer.update({"blocks": nn.ModuleList(blocks)})
if not (self.config.alibi or self.config.rope):
self.transformer.update(
{"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)}
)
if not config.weight_tying:
self.transformer.update(
{
"ff_out": nn.Linear(
config.d_model,
config.embedding_size or config.vocab_size,
bias=config.include_bias,
device=config.init_device,
)
}
)
# When `init_device="meta"` FSDP will call `reset_parameters()` to initialize weights.
if init_params and self.config.init_device != "meta":
self.reset_parameters()
self.__num_fwd_flops: Optional[int] = None
# Warm up cache.
if self.config.alibi:
get_causal_attention_bias(self.__cache, config.max_sequence_length, _non_meta_init_device(config))
self.get_alibi_attention_bias(config.max_sequence_length, _non_meta_init_device(config))
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
self.activation_checkpointing_strategy = strategy
if self.config.block_group_size != 1:
for block_group in self.transformer.block_groups:
block_group.set_activation_checkpointing(strategy)
else:
for block in self.transformer.blocks:
block.set_activation_checkpointing(strategy)
@property
def device(self) -> torch.device:
device: torch.device = self.transformer.wte.weight.device # type: ignore
if device.type == "meta":
return _non_meta_init_device(self.config)
else:
return device
def reset_parameters(self):
log.info("Initializing model parameters...")
# Top-level embeddings / linear layers.
init_weights(
self.config,
self.transformer.wte, # type: ignore
std_factor=(0.5 * math.sqrt(self.config.d_model)) if self.config.scale_logits else 1.0,
type_of_module=ModuleType.emb,
)
if hasattr(self.transformer, "wpe"):
init_weights(self.config, self.transformer.wpe, type_of_module=ModuleType.emb) # type: ignore
# Top-level layer norm.
self.transformer.ln_f.reset_parameters() # type: ignore
# Output weights.
if hasattr(self.transformer, "ff_out"):
init_weights(self.config, self.transformer.ff_out, type_of_module=ModuleType.final_out) # type: ignore
# Let the blocks handle themselves.
if self.config.block_group_size == 1:
for block in self.transformer.blocks:
block.reset_parameters()
else:
for block_group in self.transformer.block_groups:
block_group.reset_parameters()
def get_alibi_attention_bias(self, seq_len: int, device: torch.device) -> torch.Tensor:
if (alibi_bias := self.__cache.get("alibi_attention_bias")) is not None and alibi_bias.shape[
-1
] >= seq_len:
if alibi_bias.device != device:
alibi_bias = alibi_bias.to(device)
self.__cache["alibi_attention_bias"] = alibi_bias
return alibi_bias
with torch.autocast(device.type, enabled=False):
alibi_bias = alibi_attention_bias(seq_len, self.config, device)
self.__cache["alibi_attention_bias"] = alibi_bias
return alibi_bias
def forward(
self,
input_ids: torch.LongTensor,
inputs_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
attention_bias: Optional[torch.Tensor] = None,
past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None,
use_cache: bool = False,
last_logits_only: bool = False,
output_hidden_states: Optional[bool] = None,
) -> OLMoOutput:
"""
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
:param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input
embeddings. When provided, it is treated as the output of the input embedding layer.
:param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates
which input IDs are masked. A `1` value in the mask means that
the corresponding input ID should *not* be ignored. A `0` means
that the corresponding input ID is masked.
This has the same meaning as the `attention_mask` in HuggingFace's `transformers`
library.
:param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`,
`(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used
to introduce causal or other biases.
If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]`
indicates that the i-th element in the sequence is allowed to attend to the j-th
element in the sequence.
If the tensor is a float tensor, it will just be added to the attention
scores before the softmax.
The default is causal, which corresponds to a lower-diagonal byte matrix of ones.
:param past_key_values: Pre-computed keys and values for each attention block.
Can be used to speed up sequential decoding. The `input_ids` which have
their past given to this model should not be passed as `input_ids` as they have already been computed.
:param use_cache: If `True`, return key and value tensors for each block.
:param last_logits_only: If `True`, only compute the logits for the last token of each sequence.
This can speed up decoding when you only care about the next token.
"""
output_hidden_states = output_hidden_states if output_hidden_states is not None else False
if past_key_values:
assert len(past_key_values) == self.config.n_layers
batch_size, seq_len = input_ids.size() if inputs_embeds is None else inputs_embeds.size()[:2]
if past_key_values is None:
past_length = 0
else:
past_length = past_key_values[0][0].size(-2)
# Get embeddings of input.
# shape: (batch_size, seq_len, d_model)
x = self.transformer.wte(input_ids) if inputs_embeds is None else inputs_embeds # type: ignore
if not (self.config.alibi or self.config.rope):
# Get positional embeddings.
# shape: (1, seq_len)
pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0)
# shape: (1, seq_len, d_model)
pos_emb = self.transformer.wpe(pos) # type: ignore
x = pos_emb + x
# Add input + positional embeddings and apply dropout.
# shape: (batch_size, seq_len, d_model)
x = self.transformer.emb_drop(x) # type: ignore
# Transform the attention mask into what the blocks expect.
if attention_mask is not None:
# shape: (batch_size, 1, 1, seq_len)
attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :]
attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min
# Merge attention mask with attention bias.
if (
attention_bias is not None
or attention_mask is not None
or self.config.alibi
# NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly
# with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute
# scores correctly.
or past_key_values is not None
):
if attention_bias is None and self.config.alibi:
attention_bias = get_causal_attention_bias(
self.__cache, past_length + seq_len, x.device
) + self.get_alibi_attention_bias(past_length + seq_len, x.device)
elif attention_bias is None:
attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device)
elif attention_bias.dtype in (torch.int8, torch.bool):
attention_bias = attention_bias.to(dtype=torch.float)
attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min)
# Transform to the right shape and data type.
mask_len = seq_len
if attention_mask is not None:
mask_len = attention_mask.shape[-1]
elif past_key_values is not None:
mask_len = past_key_values[0][0].shape[-2] + seq_len
attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float)
# Add in the masking bias.
if attention_mask is not None:
attention_bias = attention_bias + attention_mask
# Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf.
# `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead
# it can produce NaNs.
ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False)
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
# decoder layers
all_hidden_states = []
# Apply blocks one-by-one.
if self.config.block_group_size == 1:
for block_idx, block in enumerate(self.transformer.blocks):
if output_hidden_states:
# add hidden states
all_hidden_states.append(x)
layer_past = None if past_key_values is None else past_key_values[block_idx]
if (
(self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.whole_layer)
or (
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_two
and block_idx % 2 == 0
)
or (
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_three
and block_idx % 3 == 0
)
or (
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_four
and block_idx % 4 == 0
)
):
# shape: (batch_size, seq_len, d_model)
x, cache = self._activation_checkpoint_fn(
block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache
)
else:
# shape: (batch_size, seq_len, d_model)
x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache)
if attn_key_values is not None:
assert cache is not None
attn_key_values.append(cache)
else:
for group_idx, block_group in enumerate(self.transformer.block_groups):
if output_hidden_states:
# add hidden states
all_hidden_states.append(x)
layers_past = (
None
if past_key_values is None
else past_key_values[
group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size
]
)
x, cache = block_group(
x, attention_bias=attention_bias, layers_past=layers_past, use_cache=use_cache
)
if attn_key_values is not None:
assert cache is not None
attn_key_values.extend(cache)
if last_logits_only:
# shape: (batch_size, 1, d_model)
x = x[:, -1, :].unsqueeze(1)
# Apply final layer norm.
# shape: (batch_size, seq_len or 1, d_model)
x = self.transformer.ln_f(x) # type: ignore
if output_hidden_states:
# add final hidden state post-final-layernorm, following HuggingFace's convention
all_hidden_states.append(x)
# Get logits.
# shape: (batch_size, seq_len or 1, vocab_size)
if self.config.weight_tying:
logits = F.linear(x, self.transformer.wte.weight, None) # type: ignore
else:
logits = self.transformer.ff_out(x) # type: ignore
if self.config.scale_logits:
logits.mul_(1 / math.sqrt(self.config.d_model))
return BaseModelOutputWithPast(
last_hidden_state=x,
past_key_values=tuple(attn_key_values) if attn_key_values is not None else None,
hidden_states=tuple(all_hidden_states) if output_hidden_states else None,
)
def get_fsdp_wrap_policy(self, wrap_strategy: Optional[FSDPWrapStrategy] = None):
if wrap_strategy is None:
return None
# The 'recurse' mode for the wrap function does not behave like you'd expect.
# Even if we return False, it may still recurse because PyTorch does what it wants,
# not what you want. This causes issues when, for example, we want to wrap 'ff_out' (a linear layer)
# but not other linear layers within a block.
# So we have to explicitly tell PyTorch which linear layers to wrap, and we also just
# return True in 'recurse' mode for simplicity.
size_based_module_to_wrap = {self.transformer.wte}
if hasattr(self.transformer, "ff_out"):
size_based_module_to_wrap.add(self.transformer.ff_out)
if wrap_strategy == FSDPWrapStrategy.by_block:
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
del nonwrapped_numel
wrap = isinstance(module, OLMoBlock)
if recurse:
return True
else:
return wrap
return fsdp_wrap_fn
elif wrap_strategy == FSDPWrapStrategy.by_block_and_size:
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
del nonwrapped_numel
wrap = isinstance(module, (OLMoBlock,)) or module in size_based_module_to_wrap
if recurse:
return True
else:
return wrap
return fsdp_wrap_fn
elif wrap_strategy == FSDPWrapStrategy.by_block_group:
if self.config.block_group_size <= 1:
raise OLMoConfigurationError(
"'by_block_group' FSDP wrapping strategy requires block group size greater than 1"
)
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
del nonwrapped_numel
wrap = isinstance(module, OLMoBlockGroup)
if recurse:
return True
else:
return wrap
return fsdp_wrap_fn
elif wrap_strategy == FSDPWrapStrategy.by_block_group_and_size:
if self.config.block_group_size <= 1:
raise OLMoConfigurationError(
"'by_block_group_and_size' FSDP wrapping strategy requires block group size greater than 1"
)
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
del nonwrapped_numel
wrap = isinstance(module, (OLMoBlockGroup,)) or module in size_based_module_to_wrap
if recurse:
return True
else:
return wrap
return fsdp_wrap_fn
elif wrap_strategy == FSDPWrapStrategy.size_based:
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
return size_based_auto_wrap_policy
elif wrap_strategy in {
FSDPWrapStrategy.one_in_two,
FSDPWrapStrategy.one_in_three,
FSDPWrapStrategy.one_in_four,
FSDPWrapStrategy.one_in_five,
}:
c = {
FSDPWrapStrategy.one_in_two: 2,
FSDPWrapStrategy.one_in_three: 3,
FSDPWrapStrategy.one_in_four: 4,
FSDPWrapStrategy.one_in_five: 5,
}[wrap_strategy]
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
del nonwrapped_numel
wrap = isinstance(module, OLMoBlock) and module.layer_id % c == 0
if recurse:
return True
else:
return wrap
return fsdp_wrap_fn
else:
raise NotImplementedError(wrap_strategy)
def num_params(self, include_embedding: bool = True) -> int:
"""
Get the total number of parameters.
"""
params = (np for np in self.named_parameters())
if not include_embedding:
params = filter( # type: ignore
lambda np: ".wte." not in np[0] and ".wpe." not in np[0],
params,
)
return sum(p.numel() for _, p in params)
@property
def num_fwd_flops(self):
if self.__num_fwd_flops:
return self.__num_fwd_flops
n_params = self.num_params()
# the number of parameters is approximately the number of multiply-accumulates (MAC) in the network
# each MAC has 2 FLOPs - we multiply by 2 ie 2 * n_param
# this gets us FLOPs / token
params_flops_per_token = 2 * n_params
params_flops_per_seq = params_flops_per_token * self.config.max_sequence_length
# there are 2 FLOPS per mac; there is A=Q*K^T and out=A*V ops (ie mult by 2)
attn_flops_per_seq = (
self.config.n_layers * 2 * 2 * (self.config.d_model * (self.config.max_sequence_length**2))
)
self.__num_fwd_flops = params_flops_per_seq + attn_flops_per_seq
return self.__num_fwd_flops
def generate(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
attention_bias: Optional[torch.Tensor] = None,
max_steps: int = 10,
beam_size: int = 1,
per_node_beam_size: Optional[int] = None,
sampler: Optional[Sampler] = None,
min_steps: Optional[int] = None,
final_sequence_scorer: Optional[FinalSequenceScorer] = None,
constraints: Optional[List[Constraint]] = None,
) -> OLMoGenerateOutput:
"""
Generate token IDs using beam search.
Note that by default ``beam_size`` is set to 1, which is greedy decoding.
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
:param attention_mask: A optional tensor of shape `(batch_size, seq_len)`, the same
as for the forward method.
:param attention_bias: A tensor of shape
`(batch_size, 1, seq_len + tokens_to_generate, seq_len + tokens_to_generate)`,
the same as for the forward method except only one shape is excepted here.
For an explanation of the other arguments, see :class:`BeamSearch`.
"""
beam_search = BeamSearch(
self.config.eos_token_id,
max_steps=max_steps,
beam_size=beam_size,
per_node_beam_size=per_node_beam_size,
sampler=sampler,
min_steps=min_steps,
final_sequence_scorer=final_sequence_scorer,
constraints=constraints,
)
# Validate inputs.
batch_size, seq_len = input_ids.shape
if attention_mask is not None:
assert attention_mask.shape == (batch_size, seq_len)
if attention_bias is not None:
assert len(attention_bias.shape) == 4
assert attention_bias.shape[:2] == (batch_size, 1)
assert (
seq_len + beam_search.max_steps
<= attention_bias.shape[2]
== attention_bias.shape[3]
<= self.config.max_sequence_length
)
tokens_generated = 0
def flatten_past_key_values(
past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
) -> Dict[str, torch.Tensor]:
out = {}
for i, (key, value) in enumerate(past_key_values):
out[f"past_key_{i}"] = key
out[f"past_value_{i}"] = value
return out
def unflatten_past_key_values(
past_key_values: Dict[str, torch.Tensor],
) -> List[Tuple[torch.Tensor, torch.Tensor]]:
out = []
for i in range(self.config.n_layers):
past_key = past_key_values[f"past_key_{i}"]
past_value = past_key_values[f"past_value_{i}"]
out.append((past_key, past_value))
return out
def step(
last_predictions: torch.Tensor, state: dict[str, torch.Tensor]
) -> tuple[torch.Tensor, dict[str, torch.Tensor]]:
nonlocal tokens_generated
attention_mask = state.get("attention_mask")
attention_bias = state.get("attention_bias")
if tokens_generated > 0:
past_key_values = unflatten_past_key_values(state)
input_ids = last_predictions.unsqueeze(1)
if attention_mask is not None:
group_size = input_ids.shape[0]
attention_mask = torch.cat((attention_mask, attention_mask.new_ones((group_size, 1))), dim=-1)
else:
past_key_values = None
input_ids = state["input_ids"]
tokens_generated += 1
# Run forward pass of model to get logits, then normalize to get log probs.
output = self(
input_ids,
attention_mask=attention_mask,
attention_bias=attention_bias,
past_key_values=past_key_values,
use_cache=True,
last_logits_only=True,
)
log_probs = F.log_softmax(output.logits[:, -1, :], dim=-1)
# Create new state.
state = flatten_past_key_values(output.attn_key_values)
if attention_mask is not None:
state["attention_mask"] = attention_mask
if attention_bias is not None:
state["attention_bias"] = attention_bias
return log_probs, state
initial_preds = input_ids.new_zeros((batch_size,)) # This is arbitrary, we won't use this.
state: dict[str, torch.Tensor] = {"input_ids": input_ids}
if attention_mask is not None:
state["attention_mask"] = attention_mask
if attention_bias is not None:
state["attention_bias"] = attention_bias
with torch.no_grad():
token_ids, scores = beam_search.search(initial_preds, state, step)
return OLMoGenerateOutput(
token_ids=token_ids, # type: ignore[arg-type]
scores=scores, # type: ignore[arg-type]
)
@classmethod
def from_checkpoint(
cls, checkpoint_dir: PathOrStr, device: str = "cpu", checkpoint_type: Optional[CheckpointType] = None
) -> OLMo:
"""
Load an OLMo model from a checkpoint.
"""
from .util import resource_path
# Guess checkpoint type.
if checkpoint_type is None:
try:
if resource_path(checkpoint_dir, "model.pt").is_file():
checkpoint_type = CheckpointType.unsharded
else:
checkpoint_type = CheckpointType.sharded
except FileNotFoundError:
checkpoint_type = CheckpointType.sharded
# Load config.
config_path = resource_path(checkpoint_dir, "config.yaml")
model_config = ModelConfig.load(config_path, key="model", validate_paths=False)
if checkpoint_type == CheckpointType.unsharded:
# Initialize model (always on CPU to start with so we don't run out of GPU memory).
model_config.init_device = "cpu"
model = OLMo(model_config)
# Load state dict directly to target device.
state_dict_path = resource_path(checkpoint_dir, "model.pt")
state_dict = torch.load(state_dict_path, map_location="cpu")
model.load_state_dict(model._make_state_dict_compatible(state_dict)[0])
model = model.to(torch.device(device))
else:
from .checkpoint import load_model_state
# Initialize model on target device. In this case the state dict is loaded in-place
# so it's not necessary to start on CPU if the target device is a GPU.
model_config.init_device = device
model = OLMo(model_config)
# Load state dict in place.
load_model_state(checkpoint_dir, model)
return model.eval()
def _make_state_dict_compatible(
self, state_dict: Dict[str, torch.Tensor]
) -> Tuple[Dict[str, torch.Tensor], Dict[str, Set[str]]]:
"""
Handles some cases where the state dict is valid yet may need to be transformed in order to
be loaded.
This modifies the state dict in-place and also returns it, along with a mapping of original key
names to new key names in cases where the keys were simply renamed. That mapping can be used
to make a corresponding optimizer state dict compatible as well.
"""
import re
from fnmatch import fnmatch
new_keys_to_og_keys: Dict[str, str] = {}
# Remove "_fsdp_wrapped_module." prefix from all keys. We don't want this prefix when the model is
# not wrapped in FSDP. And when the model is wrapped in FSDP, loading this state dict will still work
# fine without the prefixes. This also simplifies the other steps below.
for key in list(state_dict.keys()):
state_dict[(new_key := key.replace("_fsdp_wrapped_module.", ""))] = state_dict.pop(key)
new_keys_to_og_keys[new_key] = key
# For backwards compatibility prior to fixing https://github.com/allenai/LLM/issues/222
if self.config.block_type == BlockType.sequential:
for key in list(state_dict.keys()):
if fnmatch(key, "transformer.*.norm.weight"):
tensor = state_dict.pop(key)
state_dict[(new_key := key.replace("norm.weight", "attn_norm.weight"))] = tensor
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
state_dict[(new_key := key.replace("norm.weight", "ff_norm.weight"))] = tensor.clone()
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
del new_keys_to_og_keys[key]
elif fnmatch(key, "transformer.*.norm.bias"):
tensor = state_dict.pop(key)
state_dict[(new_key := key.replace("norm.bias", "attn_norm.bias"))] = tensor
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
state_dict[(new_key := key.replace("norm.bias", "ff_norm.bias"))] = tensor.clone()
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
del new_keys_to_og_keys[key]
# For loading a state dict that was saved with a different `block_group_size`.
if "transformer.block_groups.0.0.attn_out.weight" in state_dict.keys():
state_dict_block_group_size = len(
[k for k in state_dict.keys() if fnmatch(k, "transformer.block_groups.0.*.attn_out.weight")]
)
else:
state_dict_block_group_size = 1
if self.config.block_group_size != state_dict_block_group_size:
log.info(
f"Regrouping state dict blocks from group size {state_dict_block_group_size} to "
f"group size {self.config.block_group_size}"
)
# For simplicity we're first going to flatten out the block groups in the state dict (if necessary)
# and then (re-)group them into the right block sizes.
if state_dict_block_group_size > 1:
for key in list(state_dict.keys()):
if (m := re.match(r"transformer.block_groups\.(\d+)\.(\d+)\..*", key)) is not None:
group_idx, group_block_idx = int(m.group(1)), int(m.group(2))
block_idx = (group_idx * state_dict_block_group_size) + group_block_idx
state_dict[
(
new_key := key.replace(
f"block_groups.{group_idx}.{group_block_idx}.", f"blocks.{block_idx}."
)
)
] = state_dict.pop(key)
new_keys_to_og_keys[new_key] = new_keys_to_og_keys.pop(key)
if self.config.block_group_size > 1:
# Group the state dict blocks into the right block size.
for key in list(state_dict.keys()):
if (m := re.match(r"transformer.blocks\.(\d+)\..*", key)) is not None:
block_idx = int(m.group(1))
group_idx, group_block_idx = (
block_idx // self.config.block_group_size,
block_idx % self.config.block_group_size,
)
state_dict[
(
new_key := key.replace(
f"blocks.{block_idx}.", f"block_groups.{group_idx}.{group_block_idx}."
)
)
] = state_dict.pop(key)
new_keys_to_og_keys[new_key] = new_keys_to_og_keys.pop(key)
og_keys_to_new: Dict[str, Set[str]] = defaultdict(set)
for new_key, og_key in new_keys_to_og_keys.items():
og_keys_to_new[og_key].add(new_key)
return state_dict, og_keys_to_new
|