File size: 7,537 Bytes
5169b80
 
 
 
2010c83
 
5169b80
2010c83
5169b80
 
2010c83
 
5169b80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2010c83
5169b80
 
 
2010c83
 
 
 
 
 
 
 
 
 
 
5169b80
2010c83
5169b80
2010c83
 
 
 
 
 
 
 
 
 
5169b80
2010c83
 
 
5169b80
2010c83
 
 
 
 
 
 
 
 
 
 
 
 
5169b80
 
 
 
 
 
 
 
 
 
 
 
 
 
2010c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5169b80
 
2010c83
 
5169b80
2010c83
5169b80
2010c83
5169b80
 
 
 
 
 
 
2010c83
 
 
 
 
 
 
 
 
 
5169b80
 
 
 
 
 
 
 
2010c83
5169b80
 
 
 
 
 
2010c83
5169b80
 
2010c83
5169b80
 
 
2010c83
 
 
5169b80
 
 
 
 
 
 
 
 
 
2010c83
5169b80
2010c83
 
5169b80
 
2010c83
 
 
 
 
 
 
 
5169b80
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from dataclasses import fields
from typing import List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import math
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast
from transformers.models.auto import AutoModelForCausalLM

from .config import ModelConfig
from .model import OLMo

from .configuration_olmo import OLMoConfig

def create_model_config_from_pretrained_config(config: OLMoConfig):
    """
    Utility function
    """

    kwargs = {}
    for field in fields(ModelConfig):
        kwargs[field.name] = getattr(config, field.name)

    model_config = ModelConfig(**kwargs)
    return model_config

class OLMoPreTrainedModel(PreTrainedModel):
    config_class = OLMoConfig
    base_model_prefix = "model"
    _no_split_modules = ["OLMoBlock"]
    # _skip_keys_device_placement = ["past_key_values", "causal_mask"]
    _skip_keys_device_placement = ["past_key_values"]

    def _init_weights(self, module):
        # `OLMoModel.reset_parameters` initializes weights of itself and its children
        if isinstance(module, OLMo):
            module.reset_parameters()

class OLMoForCausalLM(OLMoPreTrainedModel):
    _tied_weights_keys = []
    # _tied_weights_keys = ["transformer.wte.weight"]

    def __init__(self, config: OLMoConfig):
        super().__init__(config)
        self.model = OLMo(config)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> torch.nn.Module:
        return self.model.transformer.wte

    def set_input_embeddings(self, value: torch.nn.Module):
        self.model.transformer.wte = value

    def get_output_embeddings(self):
        if self.config.weight_tying:
            return self.model.transformer.wte
        else:
            return self.model.transformer.ff_out

    def set_output_embeddings(self, value: torch.nn.Module):
        if self.config.weight_tying:
            self.model.transformer.wte = value
        else:
            self.model.transformer.ff_out = value

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        attention_bias: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
        Returns:
        Example:
        ```python
        >>> from transformers import AutoTokenizer, OLMoForCausalLM
        >>> model = OLMoForCausalLM.from_pretrained("allenai/OLMo-7B")
        >>> tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-7B")
        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")
        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""
        output_attentions = output_attentions or self.config.output_attentions
        output_hidden_states = output_hidden_states or self.config.output_hidden_states
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        assert not output_attentions

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        base_output: Union[BaseModelOutputWithPast, Tuple] = self.model.forward(
            input_ids=input_ids,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            attention_bias=attention_bias,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_hidden_states=output_hidden_states,
        )

        last_hidden_state = base_output.last_hidden_state if return_dict else base_output[0]

        # Get logits.
        # shape: (batch_size, seq_len or 1, vocab_size)
        if self.config.weight_tying:
            logits = F.linear(last_hidden_state, self.model.transformer.wte.weight, None)  # type: ignore
        else:
            logits = self.model.transformer.ff_out(last_hidden_state)  # type: ignore
        if self.config.scale_logits:
            logits.mul_(1 / math.sqrt(self.config.d_model))

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = torch.nn.CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + base_output[1:]
            return (loss,) + output if loss is not None else output

        assert isinstance(base_output, BaseModelOutputWithPast)
        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=base_output.past_key_values,
            hidden_states=base_output.hidden_states,
            attentions=base_output.attentions,
        )

    def prepare_inputs_for_generation(
        self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
    ):
        if past_key_values:
            # This is because we want the model to only process the last generated token.
            input_ids = input_ids[:, -1:]
        model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}

        kwargs.pop("cache_position")
        model_inputs.update(kwargs)
        # logger.warning("%s %s", kwargs.keys(), model_inputs.keys())
        # model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
            )
        return reordered_past

# Register the model so that it is available for transformer pipelines, auto-loading, etc.
AutoModelForCausalLM.register(OLMoConfig, OLMoForCausalLM)