|
import logging |
|
from abc import ABCMeta, abstractmethod |
|
from dataclasses import dataclass, replace |
|
from math import cos, pi, sqrt |
|
from typing import Any, Dict, List, Optional, Tuple |
|
|
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
from torch.distributed.fsdp import FullyShardedDataParallel |
|
from torch.optim.optimizer import Optimizer as OptimizerBase |
|
|
|
from .model import LayerNormBase, BitLinear158 |
|
from .config import OptimizerType, SchedulerConfig, SchedulerType, TrainConfig |
|
from .torch_util import get_default_device, is_distributed |
|
|
|
__all__ = [ |
|
"Optimizer", |
|
"LionW", |
|
"AdamW", |
|
"Scheduler", |
|
"CosWithWarmup", |
|
"LinearWithWarmup", |
|
"InvSqrtWithWarmup", |
|
"MaxScheduler", |
|
"ConstantScheduler", |
|
"BoltOnWarmupScheduler", |
|
"build_optimizer", |
|
"build_scheduler", |
|
] |
|
|
|
|
|
log = logging.getLogger(__name__) |
|
|
|
|
|
class Optimizer(OptimizerBase): |
|
def _clean_param_name(self, name: str) -> str: |
|
return name.replace("_fsdp_wrapped_module.", "") |
|
|
|
@torch.no_grad() |
|
def clip_grads_and_collect_metrics( |
|
self, global_step: int, collect_param_metrics: bool = True |
|
) -> Dict[str, torch.Tensor]: |
|
""" |
|
Clips gradients for every group that has the field `max_grad_norm`. |
|
At the same time collect metrics for each parameter and its gradient. |
|
""" |
|
device = get_default_device() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
per_param_min_metrics: List[torch.Tensor] = [] |
|
per_param_max_metrics: List[torch.Tensor] = [] |
|
per_param_sum_metrics: List[torch.Tensor] = [] |
|
per_param_norm_metrics: List[torch.Tensor] = [] |
|
per_param_numel_metrics: List[torch.Tensor] = [] |
|
|
|
per_param_min_metric_names: List[str] = [] |
|
per_param_max_metric_names: List[str] = [] |
|
per_param_avg_metric_names: List[str] = [] |
|
per_param_norm_metric_names: List[str] = [] |
|
|
|
|
|
for group in self.param_groups: |
|
if is_distributed(): |
|
|
|
|
|
assert group.get("sharded", True) is True |
|
|
|
for name, p in zip(group["param_names"], group["params"]): |
|
name = self._clean_param_name(name) |
|
|
|
|
|
tensors: List[Optional[torch.Tensor]] = [p.grad] |
|
prefixes: List[str] = [f"grad/{name}"] |
|
if collect_param_metrics: |
|
state = self.get_state_for_param(p) |
|
sorted_state_keys = sorted([k for k in state.keys()]) |
|
tensors.extend([p] + [state[key] for key in sorted_state_keys]) |
|
prefixes.extend([f"param/{name}"] + [f"{key}/{name}" for key in sorted_state_keys]) |
|
assert len(tensors) == len(prefixes) |
|
|
|
|
|
for x, prefix in zip(tensors, prefixes): |
|
|
|
|
|
if x is not None and x.numel() > 0: |
|
if collect_param_metrics: |
|
x_abs = x.abs() |
|
per_param_min_metrics.append(x_abs.min().unsqueeze(0).to(dtype=torch.float32)) |
|
per_param_max_metrics.append(x_abs.max().unsqueeze(0).to(dtype=torch.float32)) |
|
per_param_sum_metrics.append(x.sum().unsqueeze(0).to(dtype=torch.float32)) |
|
per_param_numel_metrics.append( |
|
torch.tensor([x.numel()], device=device, dtype=torch.float32) |
|
) |
|
per_param_norm_metrics.append( |
|
torch.linalg.vector_norm(x, 2.0, dtype=torch.float32).unsqueeze(0) |
|
) |
|
else: |
|
if collect_param_metrics: |
|
per_param_min_metrics.append( |
|
torch.tensor([float("inf")], device=device, dtype=torch.float32) |
|
) |
|
per_param_max_metrics.append(torch.tensor([0.0], device=device, dtype=torch.float32)) |
|
per_param_sum_metrics.append(torch.tensor([0.0], device=device, dtype=torch.float32)) |
|
per_param_numel_metrics.append(torch.tensor([0.0], device=device, dtype=torch.float32)) |
|
per_param_norm_metrics.append(torch.tensor([0.0], device=device, dtype=torch.float32)) |
|
if collect_param_metrics: |
|
per_param_min_metric_names.append(f"{prefix}.min") |
|
per_param_max_metric_names.append(f"{prefix}.max") |
|
per_param_avg_metric_names.append(f"{prefix}.avg") |
|
per_param_norm_metric_names.append(f"{prefix}.norm") |
|
|
|
assert ( |
|
len(per_param_min_metrics) |
|
== len(per_param_min_metric_names) |
|
== len(per_param_max_metrics) |
|
== len(per_param_max_metric_names) |
|
== len(per_param_sum_metrics) |
|
== len(per_param_numel_metrics) |
|
== len(per_param_avg_metric_names) |
|
) |
|
assert len(per_param_norm_metrics) == len(per_param_norm_metric_names) |
|
|
|
def is_grad_norm_metric(metric_name: str) -> bool: |
|
return metric_name.startswith("grad/") and metric_name.endswith(".norm") |
|
|
|
|
|
total_grad_norm: torch.Tensor |
|
per_param_avg_metrics: List[torch.Tensor] = [] |
|
if is_distributed(): |
|
|
|
|
|
|
|
|
|
if per_param_min_metrics: |
|
all_mins = torch.cat(per_param_min_metrics).to(device) |
|
dist.reduce(all_mins, 0, op=dist.ReduceOp.MIN) |
|
per_param_min_metrics = all_mins.split(1) |
|
|
|
if per_param_max_metrics: |
|
all_maxs = torch.cat(per_param_max_metrics).to(device) |
|
dist.reduce(all_maxs, 0, op=dist.ReduceOp.MAX) |
|
per_param_max_metrics = all_maxs.split(1) |
|
|
|
all_norms = torch.cat(per_param_norm_metrics).to(device) ** 2.0 |
|
if per_param_sum_metrics and per_param_numel_metrics: |
|
all_sums = torch.cat(per_param_sum_metrics).to(device) |
|
all_numels = torch.cat(per_param_numel_metrics).to(device) |
|
all_sums_norms_numels = torch.cat( |
|
[all_sums.unsqueeze(0), all_norms.unsqueeze(0), all_numels.unsqueeze(0)], dim=0 |
|
) |
|
dist.all_reduce(all_sums_norms_numels, op=dist.ReduceOp.SUM) |
|
all_sums, all_norms, all_numels = all_sums_norms_numels.split(1) |
|
|
|
|
|
per_param_avg_metrics = (all_sums / all_numels).squeeze(0).split(1) |
|
else: |
|
dist.all_reduce(all_norms, op=dist.ReduceOp.SUM) |
|
grad_norm_metric_mask = torch.tensor( |
|
[float(is_grad_norm_metric(n)) for n in per_param_norm_metric_names], device=all_norms.device |
|
) |
|
total_grad_norm = (all_norms * grad_norm_metric_mask).sum() ** 0.5 |
|
per_param_norm_metrics = (all_norms ** (0.5)).squeeze(0).split(1) |
|
else: |
|
total_grad_norm = ( |
|
torch.cat( |
|
[ |
|
m |
|
for m, n in zip(per_param_norm_metrics, per_param_norm_metric_names) |
|
if is_grad_norm_metric(n) |
|
] |
|
) |
|
** 2.0 |
|
).sum() ** 0.5 |
|
per_param_avg_metrics = [x / n for x, n in zip(per_param_sum_metrics, per_param_numel_metrics)] |
|
|
|
assert len(per_param_avg_metrics) == len(per_param_avg_metric_names) |
|
|
|
|
|
all_metrics: Dict[str, torch.Tensor] = {} |
|
for metric_name, metric in zip(per_param_min_metric_names, per_param_min_metrics): |
|
all_metrics[metric_name] = metric.squeeze(0) |
|
for metric_name, metric in zip(per_param_max_metric_names, per_param_max_metrics): |
|
all_metrics[metric_name] = metric.squeeze(0) |
|
for metric_name, metric in zip(per_param_avg_metric_names, per_param_avg_metrics): |
|
all_metrics[metric_name] = metric.squeeze(0) |
|
for metric_name, metric in zip(per_param_norm_metric_names, per_param_norm_metrics): |
|
all_metrics[metric_name] = metric.squeeze(0) |
|
all_metrics["total_grad_norm"] = total_grad_norm |
|
|
|
|
|
num_grads_clipped = 0 |
|
num_eligible_grads = 0 |
|
for group in self.param_groups: |
|
if (max_norm_ratio := group.get("max_grad_norm_ratio")) is not None: |
|
num_clipped = self._do_adaptive_clipping( |
|
group, max_norm_ratio, global_step, all_metrics, collect_param_metrics=collect_param_metrics |
|
) |
|
elif (max_norm := group.get("max_grad_norm")) is not None: |
|
num_clipped = self._do_global_fixed_clipping( |
|
group, max_norm, all_metrics, collect_param_metrics=collect_param_metrics |
|
) |
|
else: |
|
|
|
continue |
|
num_eligible_grads += len(group["params"]) |
|
if num_clipped is not None: |
|
num_grads_clipped += num_clipped |
|
|
|
if collect_param_metrics: |
|
if num_eligible_grads > 0: |
|
clipping_rate = torch.tensor(num_grads_clipped / num_eligible_grads, device="cpu") |
|
else: |
|
clipping_rate = torch.tensor(0.0, device="cpu") |
|
all_metrics["clipping_rate"] = clipping_rate |
|
return all_metrics |
|
else: |
|
return {} |
|
|
|
@torch.no_grad() |
|
def _do_adaptive_clipping( |
|
self, |
|
group: Dict[str, Any], |
|
max_norm_ratio: float, |
|
global_step: int, |
|
all_metrics: Dict[str, torch.Tensor], |
|
collect_param_metrics: bool = True, |
|
) -> Optional[int]: |
|
""" |
|
Do adaptive gradient clipping on a param group. |
|
|
|
If ``collect_param_metrics`` is ``True`` this will return the total number of gradients clipped. |
|
""" |
|
device = get_default_device() |
|
num_grads_clipped = 0 |
|
|
|
|
|
|
|
beta1, beta2 = group["betas"] |
|
beta = max(beta1, beta2) |
|
for name, p in zip(group["param_names"], group["params"]): |
|
name = self._clean_param_name(name) |
|
grad_norm = all_metrics.get(f"grad/{name}.norm") |
|
if grad_norm is None: |
|
continue |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
state = self.state[p] |
|
grad_norm_exp_avg = state.get("grad_norm_exp_avg") |
|
if grad_norm_exp_avg is None: |
|
grad_norm_exp_avg = grad_norm.clone().to(device) |
|
|
|
|
|
|
|
if global_step > 1: |
|
state["grad_norm_exp_avg"] = grad_norm_exp_avg |
|
|
|
max_allowed_norm = max_norm_ratio * grad_norm_exp_avg |
|
clip_coef = max_allowed_norm / (grad_norm + 1e-6) |
|
|
|
|
|
|
|
|
|
clip_coef_clamped = torch.clamp(clip_coef, max=1.0) |
|
if p.grad is not None: |
|
|
|
p.grad.detach().mul_(clip_coef_clamped.to(p.grad.device, p.grad.dtype)) |
|
|
|
|
|
grad_norm_exp_avg.lerp_((grad_norm * clip_coef_clamped).to(grad_norm_exp_avg.device), 1 - beta) |
|
|
|
|
|
|
|
if collect_param_metrics: |
|
|
|
if clip_coef_clamped < 1.0: |
|
num_grads_clipped += 1 |
|
all_metrics[f"grad_norm_exp_avg/{name}"] = grad_norm_exp_avg |
|
return num_grads_clipped if collect_param_metrics else None |
|
|
|
@torch.no_grad() |
|
def _do_global_fixed_clipping( |
|
self, |
|
group: Dict[str, Any], |
|
max_norm: float, |
|
all_metrics: Dict[str, torch.Tensor], |
|
collect_param_metrics: bool = True, |
|
) -> Optional[int]: |
|
""" |
|
Do global fixed gradient clipping on a param group. |
|
|
|
If ``collect_param_metrics`` is ``True`` this will return the total number of gradients clipped. |
|
""" |
|
device = get_default_device() |
|
total_grad_norm = all_metrics["total_grad_norm"] |
|
clip_coef = max_norm / (total_grad_norm.to(device) + 1e-6) |
|
clip_coef_clamped = torch.clamp(clip_coef, max=1.0) |
|
num_grads_clipped: Optional[int] = None |
|
if collect_param_metrics: |
|
|
|
if clip_coef_clamped < 1.0: |
|
num_grads_clipped = len(group["params"]) |
|
for p in group["params"]: |
|
|
|
|
|
|
|
if p.grad is not None: |
|
|
|
p.grad.detach().mul_(clip_coef_clamped.to(p.grad.device, p.grad.dtype)) |
|
return num_grads_clipped |
|
|
|
def get_post_step_metrics(self, module: nn.Module) -> Dict[str, torch.Tensor]: |
|
del module |
|
return {} |
|
|
|
def get_state_for_param(self, param: nn.Parameter) -> Dict[str, Optional[torch.Tensor]]: |
|
del param |
|
return {} |
|
|
|
|
|
class LionW(Optimizer): |
|
""" |
|
Adapted from https://github.com/google/automl/blob/master/lion/lion_pytorch.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params, |
|
lr: float = 1e-4, |
|
betas: Tuple[float, float] = (0.9, 0.99), |
|
weight_decay: float = 0.0, |
|
): |
|
assert lr > 0.0 |
|
assert all([0.0 <= beta <= 1.0 for beta in betas]) |
|
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay) |
|
super().__init__(params, defaults) |
|
for group in self.param_groups: |
|
group["initial_lr"] = group["lr"] |
|
self._update_total_dot_prod: Optional[torch.Tensor] = None |
|
self._update_total_norm: Optional[torch.Tensor] = None |
|
self._signed_update_total_norm: Optional[torch.Tensor] = None |
|
|
|
def get_post_step_metrics(self, module: nn.Module) -> Dict[str, torch.Tensor]: |
|
update_total_dot_prod = self._update_total_dot_prod |
|
update_total_norm = self._update_total_norm |
|
signed_update_total_norm = self._signed_update_total_norm |
|
if update_total_dot_prod is None or update_total_norm is None or signed_update_total_norm is None: |
|
return {} |
|
|
|
if is_distributed() and isinstance(module, FullyShardedDataParallel): |
|
|
|
update_total_norm = update_total_norm**2.0 |
|
signed_update_total_norm = signed_update_total_norm**2.0 |
|
|
|
all_together = torch.stack([update_total_dot_prod, update_total_norm, signed_update_total_norm]) |
|
|
|
dist.reduce(all_together, 0) |
|
update_total_dot_prod, update_total_norm, signed_update_total_norm = all_together |
|
update_total_norm = update_total_norm**0.5 |
|
signed_update_total_norm = signed_update_total_norm**0.5 |
|
|
|
update_cos_sim = update_total_dot_prod / torch.max( |
|
update_total_norm * signed_update_total_norm, torch.tensor(1e-8, device=get_default_device()) |
|
) |
|
return {"update_cos_sim": update_cos_sim} |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None) -> None: |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
closure() |
|
|
|
update_total_dot_prod = torch.tensor(0.0, dtype=torch.float32) |
|
update_norms = [] |
|
signed_update_norms = [] |
|
|
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
|
|
|
|
p.data.mul_(1 - group["lr"] * group["weight_decay"]) |
|
|
|
grad = p.grad |
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
|
|
state["exp_avg"] = torch.zeros_like(p) |
|
|
|
exp_avg = state["exp_avg"] |
|
beta1, beta2 = group["betas"] |
|
|
|
|
|
update = exp_avg * beta1 + grad * (1 - beta1) |
|
signed_update = torch.sign(update) |
|
p.add_(signed_update, alpha=-group["lr"]) |
|
|
|
|
|
exp_avg.mul_(beta2).add_(grad, alpha=1 - beta2) |
|
|
|
|
|
|
|
update_total_dot_prod = update_total_dot_prod.to(update.device) |
|
update_total_dot_prod += torch.tensordot(update, signed_update, dims=len(update.shape)) |
|
update_norms.append(torch.linalg.vector_norm(update, 2.0, dtype=torch.float32)) |
|
signed_update_norms.append(torch.linalg.vector_norm(signed_update, 2.0, dtype=torch.float32)) |
|
|
|
|
|
self._update_total_dot_prod = update_total_dot_prod.to(get_default_device()) |
|
self._update_total_norm = torch.linalg.vector_norm( |
|
torch.stack(update_norms), |
|
2.0, |
|
dtype=torch.float32, |
|
).to(get_default_device()) |
|
self._signed_update_total_norm = torch.linalg.vector_norm( |
|
torch.stack(signed_update_norms), |
|
2.0, |
|
dtype=torch.float32, |
|
).to(get_default_device()) |
|
|
|
|
|
class AdamW(torch.optim.AdamW, Optimizer): |
|
def get_state_for_param(self, param: nn.Parameter) -> Dict[str, Optional[torch.Tensor]]: |
|
return {key: self.state[param].get(key) for key in ("exp_avg", "exp_avg_sq")} |
|
|
|
|
|
@dataclass |
|
class Scheduler(metaclass=ABCMeta): |
|
|
|
|
|
grad_clip_warmup_steps: Optional[int] |
|
grad_clip_warmup_factor: Optional[float] |
|
|
|
@abstractmethod |
|
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float: |
|
raise NotImplementedError |
|
|
|
def _get_max_grad_norm_coeff( |
|
self, initial_value: Optional[float], step: int, max_steps: int |
|
) -> Optional[float]: |
|
del max_steps |
|
if initial_value is None: |
|
return None |
|
elif ( |
|
self.grad_clip_warmup_steps is None |
|
or self.grad_clip_warmup_factor is None |
|
or step > self.grad_clip_warmup_steps |
|
): |
|
return initial_value |
|
else: |
|
return self.grad_clip_warmup_factor * initial_value |
|
|
|
def get_max_grad_norm( |
|
self, initial_max_grad_norm: Optional[float], step: int, max_steps: int |
|
) -> Optional[float]: |
|
return self._get_max_grad_norm_coeff(initial_max_grad_norm, step, max_steps) |
|
|
|
def get_max_grad_norm_ratio( |
|
self, initial_max_grad_norm_ratio: Optional[float], step: int, max_steps: int |
|
) -> Optional[float]: |
|
return self._get_max_grad_norm_coeff(initial_max_grad_norm_ratio, step, max_steps) |
|
|
|
def _linear_warmup(self, initial_lr: float, step: int, warmup_steps: int = 2000) -> float: |
|
return initial_lr * (0.1 + 0.9 * min(step, warmup_steps) / warmup_steps) |
|
|
|
|
|
@dataclass |
|
class CosWithWarmup(Scheduler): |
|
warmup_steps: int |
|
alpha_f: float = 0.1 |
|
t_max: Optional[int] = None |
|
|
|
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float: |
|
max_steps = max_steps if self.t_max is None else self.t_max |
|
eta_min = initial_lr * self.alpha_f |
|
if step < self.warmup_steps: |
|
return self._linear_warmup(initial_lr, step, self.warmup_steps) |
|
elif step >= max_steps: |
|
return eta_min |
|
else: |
|
step = step - self.warmup_steps |
|
max_steps = max_steps - self.warmup_steps |
|
return eta_min + (initial_lr - eta_min) * (1 + cos(pi * step / max_steps)) / 2 |
|
|
|
|
|
@dataclass |
|
class LinearWithWarmup(Scheduler): |
|
warmup_steps: int |
|
alpha_f: float = 0.1 |
|
t_max: Optional[int] = None |
|
|
|
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float: |
|
max_steps = max_steps if self.t_max is None else self.t_max |
|
eta_min = initial_lr * self.alpha_f |
|
if step < self.warmup_steps: |
|
return self._linear_warmup(initial_lr, step, self.warmup_steps) |
|
elif step >= max_steps: |
|
return eta_min |
|
else: |
|
step = step - self.warmup_steps |
|
max_steps = max_steps - self.warmup_steps |
|
return initial_lr - (initial_lr - eta_min) * (step / max_steps) |
|
|
|
|
|
@dataclass |
|
class InvSqrtWithWarmup(Scheduler): |
|
warmup_steps: int |
|
|
|
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float: |
|
if step < self.warmup_steps: |
|
return self._linear_warmup(initial_lr, step, self.warmup_steps) |
|
del max_steps |
|
return initial_lr * sqrt(self.warmup_steps / max(self.warmup_steps, step)) |
|
|
|
|
|
@dataclass |
|
class MaxScheduler(Scheduler): |
|
sched1: Scheduler |
|
sched2: Scheduler |
|
|
|
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float: |
|
return max( |
|
self.sched1.get_lr(initial_lr, step, max_steps), self.sched2.get_lr(initial_lr, step, max_steps) |
|
) |
|
|
|
|
|
@dataclass |
|
class BoltOnWarmupScheduler(Scheduler): |
|
inner: Scheduler |
|
warmup_start: int |
|
warmup_end: int |
|
|
|
@classmethod |
|
def wrap(cls, scheduler: Scheduler, warmup_start: int, warmup_end: int) -> "BoltOnWarmupScheduler": |
|
return cls( |
|
grad_clip_warmup_steps=None, |
|
grad_clip_warmup_factor=None, |
|
inner=scheduler, |
|
warmup_start=warmup_start, |
|
warmup_end=warmup_end, |
|
) |
|
|
|
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float: |
|
if step < self.warmup_start: |
|
return 0.0 |
|
if step < self.warmup_end: |
|
lr_at_intercept = self.inner.get_lr(initial_lr, self.warmup_end, max_steps) |
|
return lr_at_intercept * (step - self.warmup_start) / (self.warmup_end - self.warmup_start) |
|
else: |
|
return self.inner.get_lr(initial_lr, step, max_steps) |
|
|
|
def _get_max_grad_norm_coeff( |
|
self, initial_value: Optional[float], step: int, max_steps: int |
|
) -> Optional[float]: |
|
return self.inner._get_max_grad_norm_coeff(initial_value, step, max_steps) |
|
|
|
|
|
@dataclass |
|
class ConstantScheduler(Scheduler): |
|
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float: |
|
del step, max_steps |
|
return initial_lr |
|
|
|
|
|
PARAM_GROUP_FIELDS = ("sharded", "max_grad_norm", "max_grad_norm_ratio", "param_names") |
|
|
|
|
|
def get_param_groups(cfg: TrainConfig, model: nn.Module) -> List[Dict[str, Any]]: |
|
""" |
|
Separate parameters into weight decay and non weight decay groups. |
|
""" |
|
param_groups: List[Dict[str, Any]] |
|
param_group_defaults = { |
|
"sharded": isinstance(model, FullyShardedDataParallel), |
|
"max_grad_norm": cfg.max_grad_norm, |
|
"max_grad_norm_ratio": cfg.max_grad_norm_ratio, |
|
} |
|
|
|
|
|
decay = set() |
|
no_decay = set() |
|
all_params = {} |
|
for mn, m in model.named_modules(): |
|
for pn, p in m.named_parameters(): |
|
|
|
|
|
|
|
if not p.requires_grad: |
|
continue |
|
|
|
fpn = f"{mn}.{pn}" if mn else pn |
|
all_params[fpn] = p |
|
|
|
if pn.endswith("bias"): |
|
if cfg.optimizer.decay_norm_and_bias: |
|
decay.add(fpn) |
|
else: |
|
no_decay.add(fpn) |
|
elif pn.endswith("weight") and (isinstance(m, nn.Linear) or isinstance(m, BitLinear158)): |
|
decay.add(fpn) |
|
elif pn.endswith("weight") and isinstance(m, (LayerNormBase, nn.LayerNorm)): |
|
if cfg.optimizer.decay_norm_and_bias: |
|
decay.add(fpn) |
|
else: |
|
no_decay.add(fpn) |
|
elif pn.endswith("weight") and isinstance(m, nn.Embedding): |
|
if cfg.optimizer.decay_embeddings: |
|
decay.add(fpn) |
|
else: |
|
no_decay.add(fpn) |
|
|
|
|
|
inter_params = decay & no_decay |
|
union_params = decay | no_decay |
|
assert len(inter_params) == 0, f"parameters {inter_params} made it into both decay/no_decay sets!" |
|
assert ( |
|
len(all_params.keys() - union_params) == 0 |
|
), f"parameters {all_params.keys() - union_params} were not separated into either decay/no_decay set!" |
|
|
|
|
|
decay_sorted = sorted(list(decay)) |
|
no_decay_sorted = sorted(list(no_decay)) |
|
param_groups = [] |
|
if len(decay_sorted) > 0: |
|
param_groups.append( |
|
{ |
|
"params": [all_params[pn] for pn in decay_sorted], |
|
"param_names": decay_sorted, |
|
**param_group_defaults, |
|
} |
|
) |
|
if len(no_decay_sorted) > 0: |
|
param_groups.append( |
|
{ |
|
"params": [all_params[pn] for pn in no_decay_sorted], |
|
"param_names": no_decay_sorted, |
|
"weight_decay": 0.0, |
|
**param_group_defaults, |
|
} |
|
) |
|
|
|
|
|
for group in param_groups: |
|
for key in PARAM_GROUP_FIELDS: |
|
assert key in group |
|
|
|
return param_groups |
|
|
|
|
|
def fix_optim_state_dict(optimizer: Optimizer, state_dict: Dict[str, Any]) -> Dict[str, Any]: |
|
""" |
|
Make sure old optim state dicts are compatible with new versions. |
|
""" |
|
if len(state_dict["param_groups"]) == 1 and len(optimizer.param_groups) == 2: |
|
assert optimizer.param_groups[1]["weight_decay"] == 0.0 |
|
|
|
|
|
decay_param_group = {k: v for k, v in state_dict["param_groups"][0].items() if k != "params"} |
|
decay_param_group["params"] = optimizer.state_dict()["param_groups"][0]["params"] |
|
|
|
|
|
no_decay_param_group = {k: v for k, v in state_dict["param_groups"][0].items() if k != "params"} |
|
no_decay_param_group["weight_decay"] = 0.0 |
|
no_decay_param_group["params"] = optimizer.state_dict()["param_groups"][1]["params"] |
|
|
|
state_dict["param_groups"] = [decay_param_group, no_decay_param_group] |
|
|
|
assert len(optimizer.param_groups) == len(state_dict["param_groups"]) |
|
|
|
|
|
|
|
|
|
|
|
for group, sd_group in zip(optimizer.param_groups, state_dict["param_groups"]): |
|
for key in PARAM_GROUP_FIELDS: |
|
sd_group[key] = group[key] |
|
|
|
return state_dict |
|
|
|
|
|
def build_optimizer(cfg: TrainConfig, model: nn.Module) -> Optimizer: |
|
param_groups = get_param_groups(cfg, model) |
|
log.info(f"Constructing optimizer with {len(param_groups)} param groups") |
|
if cfg.optimizer.name == OptimizerType.lionw: |
|
return LionW( |
|
param_groups, |
|
lr=cfg.optimizer.learning_rate, |
|
betas=cfg.optimizer.betas, |
|
weight_decay=cfg.optimizer.weight_decay, |
|
) |
|
elif cfg.optimizer.name == OptimizerType.adamw: |
|
return AdamW( |
|
param_groups, |
|
lr=cfg.optimizer.learning_rate, |
|
betas=cfg.optimizer.betas, |
|
weight_decay=cfg.optimizer.weight_decay, |
|
eps=1e-5, |
|
) |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
def build_scheduler(cfg: TrainConfig, sched_cfg: Optional[SchedulerConfig] = None) -> Scheduler: |
|
sched_cfg = sched_cfg if sched_cfg is not None else cfg.scheduler |
|
if sched_cfg.name == SchedulerType.cosine_with_warmup: |
|
return CosWithWarmup( |
|
grad_clip_warmup_steps=None |
|
if sched_cfg.grad_clip_warmup_steps is None |
|
else int(sched_cfg.grad_clip_warmup_steps), |
|
grad_clip_warmup_factor=sched_cfg.grad_clip_warmup_factor, |
|
warmup_steps=int(sched_cfg.t_warmup), |
|
alpha_f=sched_cfg.alpha_f, |
|
t_max=None if sched_cfg.t_max is None else int(sched_cfg.t_max), |
|
) |
|
elif sched_cfg.name == SchedulerType.linear_with_warmup: |
|
return LinearWithWarmup( |
|
grad_clip_warmup_steps=None |
|
if sched_cfg.grad_clip_warmup_steps is None |
|
else int(sched_cfg.grad_clip_warmup_steps), |
|
grad_clip_warmup_factor=sched_cfg.grad_clip_warmup_factor, |
|
warmup_steps=int(sched_cfg.t_warmup), |
|
alpha_f=sched_cfg.alpha_f, |
|
t_max=None if sched_cfg.t_max is None else int(sched_cfg.t_max), |
|
) |
|
elif sched_cfg.name == SchedulerType.inverse_sqrt_with_warmup: |
|
return InvSqrtWithWarmup( |
|
grad_clip_warmup_steps=None |
|
if sched_cfg.grad_clip_warmup_steps is None |
|
else int(sched_cfg.grad_clip_warmup_steps), |
|
grad_clip_warmup_factor=sched_cfg.grad_clip_warmup_factor, |
|
warmup_steps=int(sched_cfg.t_warmup), |
|
) |
|
elif sched_cfg.name == SchedulerType.max_scheduler: |
|
return MaxScheduler( |
|
grad_clip_warmup_steps=None |
|
if sched_cfg.grad_clip_warmup_steps is None |
|
else int(sched_cfg.grad_clip_warmup_steps), |
|
grad_clip_warmup_factor=sched_cfg.grad_clip_warmup_factor, |
|
sched1=build_scheduler(cfg, replace(sched_cfg, name=SchedulerType.cosine_with_warmup)), |
|
sched2=build_scheduler(cfg, replace(sched_cfg, name=SchedulerType.inverse_sqrt_with_warmup)), |
|
) |
|
elif sched_cfg.name == SchedulerType.constant: |
|
return ConstantScheduler( |
|
grad_clip_warmup_steps=None |
|
if sched_cfg.grad_clip_warmup_steps is None |
|
else int(sched_cfg.grad_clip_warmup_steps), |
|
grad_clip_warmup_factor=sched_cfg.grad_clip_warmup_factor, |
|
) |
|
else: |
|
raise NotImplementedError |
|
|