--- license: apache-2.0 datasets: - allenai/dolma --- # OLMo-Bitnet-1B OLMo-Bitnet-1B is a 1B parameter model trained using the method described in [The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits](https://arxiv.org/abs/2402.17764). The result of this is that all of the parameter weights take only the values -1, 0, or 1. It was trained on a 60B subset of the [Dolma](https://huggingface.co/datasets/allenai/dolma) dataset, so it is merely a research proof-of-concept to test out the methodolgy. A separate training run was run with the exact same hyperparameters, but using standard fp16 weights. The comparison can be found in [this wandb report](https://api.wandb.ai/links/emozilla/evltqiv7). Sample inference code ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TextStreamer tokenizer = AutoTokenizer.from_pretrained("NousResearch/OLMo-Bitnet-1B") model = AutoModelForCausalLM.from_pretrained("NousResearch/OLMo-Bitnet-1B", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") streamer = TextStreamer(tokenizer) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, pad_token_id=tokenizer.eos_token_id, temperature=0.8, repetition_penalty=1.1, do_sample=True,streamer=streamer) pipe("The capitol of Paris is", max_new_tokens=256) ``` Training was performed using [OLMo](https://github.com/allenai/OLMo).