emozilla commited on
Commit
7038186
·
verified ·
1 Parent(s): 1c21678

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - emozilla/yarn-train-tokenized-32k-mistral
4
+ metrics:
5
+ - perplexity
6
+ library_name: transformers
7
+ license: apache-2.0
8
+ language:
9
+ - en
10
+ ---
11
+
12
+ # Model Card: Yarn-Solar-10b-64k
13
+
14
+ [Preprint (arXiv)](https://arxiv.org/abs/2309.00071)
15
+ [GitHub](https://github.com/jquesnelle/yarn)
16
+ ![yarn](https://raw.githubusercontent.com/jquesnelle/yarn/solar/data/proofpile-long-small-solar.csv.png)
17
+
18
+ ## Model Description
19
+
20
+ Yarn-Solar-10b-64k is a state-of-the-art language model for long context, further pretrained on two billion long context tokens using the YaRN extension method.
21
+ It is an extension of [SOLAR-10.7B-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-v1.0) and supports a 64k token context window.
22
+
23
+ To use, pass `trust_remote_code=True` when loading the model, for example
24
+
25
+ ```python
26
+ model = AutoModelForCausalLM.from_pretrained("NousResearch/Yarn-Solar-10b-64k",
27
+ attn_implementation="flash_attention_2",
28
+ torch_dtype=torch.bfloat16,
29
+ device_map="auto",
30
+ trust_remote_code=True)
31
+ ```
32
+
33
+ In addition you will need to use the latest version of `transformers`
34
+ ```sh
35
+ pip install git+https://github.com/huggingface/transformers
36
+ ```
37
+
38
+ ## Benchmarks
39
+
40
+ Long context benchmarks:
41
+ | Model | Context Window | 4k PPL | 8k PPL | 16k PPL | 32k PPL | 64k PPL |
42
+ |-------|---------------:|------:|----------:|-----:|-----:|------------:|
43
+ | [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 8k | 3.09 | 2.96 | - | - | - |
44
+ | [Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) | 64k | 3.18 | 3.04 | 2.65 | 2.44 | 2.20 |
45
+ | [Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) | 128k | 3.21 | 3.08 | 2.68 | 2.47 | 2.24 |
46
+ | [SOLAR-10.7B-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-v1.0) | 4k | 3.07 | - | - | - | - |
47
+ | [Yarn-Solar-10b-32k](https://huggingface.co/NousResearch/Yarn-Solar-10b-32k) | 32k | 3.09 | 2.95 | 2.57 | 2.31 | - |
48
+ | **[Yarn-Solar-10b-64k](https://huggingface.co/NousResearch/Yarn-Solar-10b-64k)** | **64k** | **3.13** | **2.99** | **2.61** | **2.34** | **2.15** |
49
+
50
+ Short context benchmarks showing that quality degradation is minimal:
51
+ | Model | Context Window | ARC-c | Hellaswag | MMLU | Truthful QA |
52
+ |-------|---------------:|------:|----------:|-----:|------------:|
53
+ | [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 8k | 59.98 | 83.31 | 64.16 | 42.15 |
54
+ | [Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) | 64k | 59.38 | 81.21 | 61.32 | 42.50 |
55
+ | [Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) | 128k | 58.87 | 80.58 | 60.64 | 42.46 |
56
+ | [SOLAR-10.7B-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-v1.0) | 4k | 61.95 | 84.60 | 65.48 | 45.04 |
57
+ | [Yarn-Solar-10b-32k](https://huggingface.co/NousResearch/Yarn-Solar-10b-32k) | 32k | 59.64 | 83.65 | 64.36 | 44.82 |
58
+ | **[Yarn-Solar-10b-64k](https://huggingface.co/NousResearch/Yarn-Solar-10b-64k)** | **64k** | **59.21** | **83.08** | **63.57** | **45.70** |
59
+
60
+ ## Collaborators
61
+
62
+ - [bloc97](https://github.com/bloc97): Methods, paper and evals
63
+ - [@theemozilla](https://twitter.com/theemozilla): Methods, paper, model training, and evals
64
+ - [@EnricoShippole](https://twitter.com/EnricoShippole): Model training
65
+ - [honglu2875](https://github.com/honglu2875): Paper and evals
66
+
67
+ The authors would like to thank LAION AI for their support of compute for this model.
68
+ It was trained on the [JUWELS](https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels) supercomputer.