Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- emozilla/yarn-train-tokenized-32k-mistral
|
4 |
+
metrics:
|
5 |
+
- perplexity
|
6 |
+
library_name: transformers
|
7 |
+
license: apache-2.0
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card: Yarn-Solar-10b-64k
|
13 |
+
|
14 |
+
[Preprint (arXiv)](https://arxiv.org/abs/2309.00071)
|
15 |
+
[GitHub](https://github.com/jquesnelle/yarn)
|
16 |
+
![yarn](https://raw.githubusercontent.com/jquesnelle/yarn/solar/data/proofpile-long-small-solar.csv.png)
|
17 |
+
|
18 |
+
## Model Description
|
19 |
+
|
20 |
+
Yarn-Solar-10b-64k is a state-of-the-art language model for long context, further pretrained on two billion long context tokens using the YaRN extension method.
|
21 |
+
It is an extension of [SOLAR-10.7B-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-v1.0) and supports a 64k token context window.
|
22 |
+
|
23 |
+
To use, pass `trust_remote_code=True` when loading the model, for example
|
24 |
+
|
25 |
+
```python
|
26 |
+
model = AutoModelForCausalLM.from_pretrained("NousResearch/Yarn-Solar-10b-64k",
|
27 |
+
attn_implementation="flash_attention_2",
|
28 |
+
torch_dtype=torch.bfloat16,
|
29 |
+
device_map="auto",
|
30 |
+
trust_remote_code=True)
|
31 |
+
```
|
32 |
+
|
33 |
+
In addition you will need to use the latest version of `transformers`
|
34 |
+
```sh
|
35 |
+
pip install git+https://github.com/huggingface/transformers
|
36 |
+
```
|
37 |
+
|
38 |
+
## Benchmarks
|
39 |
+
|
40 |
+
Long context benchmarks:
|
41 |
+
| Model | Context Window | 4k PPL | 8k PPL | 16k PPL | 32k PPL | 64k PPL |
|
42 |
+
|-------|---------------:|------:|----------:|-----:|-----:|------------:|
|
43 |
+
| [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 8k | 3.09 | 2.96 | - | - | - |
|
44 |
+
| [Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) | 64k | 3.18 | 3.04 | 2.65 | 2.44 | 2.20 |
|
45 |
+
| [Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) | 128k | 3.21 | 3.08 | 2.68 | 2.47 | 2.24 |
|
46 |
+
| [SOLAR-10.7B-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-v1.0) | 4k | 3.07 | - | - | - | - |
|
47 |
+
| [Yarn-Solar-10b-32k](https://huggingface.co/NousResearch/Yarn-Solar-10b-32k) | 32k | 3.09 | 2.95 | 2.57 | 2.31 | - |
|
48 |
+
| **[Yarn-Solar-10b-64k](https://huggingface.co/NousResearch/Yarn-Solar-10b-64k)** | **64k** | **3.13** | **2.99** | **2.61** | **2.34** | **2.15** |
|
49 |
+
|
50 |
+
Short context benchmarks showing that quality degradation is minimal:
|
51 |
+
| Model | Context Window | ARC-c | Hellaswag | MMLU | Truthful QA |
|
52 |
+
|-------|---------------:|------:|----------:|-----:|------------:|
|
53 |
+
| [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 8k | 59.98 | 83.31 | 64.16 | 42.15 |
|
54 |
+
| [Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) | 64k | 59.38 | 81.21 | 61.32 | 42.50 |
|
55 |
+
| [Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) | 128k | 58.87 | 80.58 | 60.64 | 42.46 |
|
56 |
+
| [SOLAR-10.7B-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-v1.0) | 4k | 61.95 | 84.60 | 65.48 | 45.04 |
|
57 |
+
| [Yarn-Solar-10b-32k](https://huggingface.co/NousResearch/Yarn-Solar-10b-32k) | 32k | 59.64 | 83.65 | 64.36 | 44.82 |
|
58 |
+
| **[Yarn-Solar-10b-64k](https://huggingface.co/NousResearch/Yarn-Solar-10b-64k)** | **64k** | **59.21** | **83.08** | **63.57** | **45.70** |
|
59 |
+
|
60 |
+
## Collaborators
|
61 |
+
|
62 |
+
- [bloc97](https://github.com/bloc97): Methods, paper and evals
|
63 |
+
- [@theemozilla](https://twitter.com/theemozilla): Methods, paper, model training, and evals
|
64 |
+
- [@EnricoShippole](https://twitter.com/EnricoShippole): Model training
|
65 |
+
- [honglu2875](https://github.com/honglu2875): Paper and evals
|
66 |
+
|
67 |
+
The authors would like to thank LAION AI for their support of compute for this model.
|
68 |
+
It was trained on the [JUWELS](https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels) supercomputer.
|