DanielJacob
commited on
Upload SVD_LlamaForCausalLM
Browse files- config.json +33 -0
- config_llama.py +88 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- modeling_svd_llama.py +221 -0
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "huggingface_repos/llama-7b-hf-svdllm-20",
|
3 |
+
"architectures": [
|
4 |
+
"SVD_LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "config_llama.SVD_LlamaConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_svd_llama.SVD_LlamaForCausalLM"
|
10 |
+
},
|
11 |
+
"bos_token_id": 1,
|
12 |
+
"eos_token_id": 2,
|
13 |
+
"hidden_act": "silu",
|
14 |
+
"hidden_size": 4096,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 11008,
|
17 |
+
"max_position_embeddings": 2048,
|
18 |
+
"model_type": "llama",
|
19 |
+
"num_attention_heads": 32,
|
20 |
+
"num_hidden_layers": 32,
|
21 |
+
"num_key_value_heads": 32,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"pretraining_tp": 1,
|
24 |
+
"ratio": 0.2,
|
25 |
+
"rms_norm_eps": 1e-06,
|
26 |
+
"rope_scaling": null,
|
27 |
+
"rope_theta": 10000.0,
|
28 |
+
"tie_word_embeddings": false,
|
29 |
+
"torch_dtype": "float16",
|
30 |
+
"transformers_version": "4.35.2",
|
31 |
+
"use_cache": true,
|
32 |
+
"vocab_size": 32000
|
33 |
+
}
|
config_llama.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
|
4 |
+
|
5 |
+
logger = logging.get_logger(__name__)
|
6 |
+
|
7 |
+
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
8 |
+
|
9 |
+
|
10 |
+
class SVD_LlamaConfig(PretrainedConfig):
|
11 |
+
model_type = "llama"
|
12 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
13 |
+
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
vocab_size=32000,
|
17 |
+
hidden_size=4096,
|
18 |
+
intermediate_size=11008,
|
19 |
+
num_hidden_layers=32,
|
20 |
+
num_attention_heads=32,
|
21 |
+
num_key_value_heads=None,
|
22 |
+
hidden_act="silu",
|
23 |
+
max_position_embeddings=2048,
|
24 |
+
initializer_range=0.02,
|
25 |
+
rms_norm_eps=1e-6,
|
26 |
+
use_cache=True,
|
27 |
+
pad_token_id=None,
|
28 |
+
bos_token_id=1,
|
29 |
+
eos_token_id=2,
|
30 |
+
pretraining_tp=1,
|
31 |
+
tie_word_embeddings=False,
|
32 |
+
rope_theta=10000.0,
|
33 |
+
rope_scaling=None,
|
34 |
+
attention_bias=False,
|
35 |
+
ratio=1,
|
36 |
+
**kwargs,
|
37 |
+
):
|
38 |
+
self.vocab_size = vocab_size
|
39 |
+
self.max_position_embeddings = max_position_embeddings
|
40 |
+
self.hidden_size = hidden_size
|
41 |
+
self.intermediate_size = intermediate_size
|
42 |
+
self.num_hidden_layers = num_hidden_layers
|
43 |
+
self.num_attention_heads = num_attention_heads
|
44 |
+
|
45 |
+
# for backward compatibility
|
46 |
+
if num_key_value_heads is None:
|
47 |
+
num_key_value_heads = num_attention_heads
|
48 |
+
|
49 |
+
self.num_key_value_heads = num_key_value_heads
|
50 |
+
self.hidden_act = hidden_act
|
51 |
+
self.initializer_range = initializer_range
|
52 |
+
self.rms_norm_eps = rms_norm_eps
|
53 |
+
self.pretraining_tp = pretraining_tp
|
54 |
+
self.use_cache = use_cache
|
55 |
+
self.rope_theta = rope_theta
|
56 |
+
self.rope_scaling = rope_scaling
|
57 |
+
self._rope_scaling_validation()
|
58 |
+
self.attention_bias = attention_bias
|
59 |
+
self.ratio = ratio
|
60 |
+
|
61 |
+
super().__init__(
|
62 |
+
pad_token_id=pad_token_id,
|
63 |
+
bos_token_id=bos_token_id,
|
64 |
+
eos_token_id=eos_token_id,
|
65 |
+
tie_word_embeddings=tie_word_embeddings,
|
66 |
+
**kwargs,
|
67 |
+
)
|
68 |
+
|
69 |
+
def _rope_scaling_validation(self):
|
70 |
+
"""
|
71 |
+
Validate the `rope_scaling` configuration.
|
72 |
+
"""
|
73 |
+
if self.rope_scaling is None:
|
74 |
+
return
|
75 |
+
|
76 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
77 |
+
raise ValueError(
|
78 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
79 |
+
f"got {self.rope_scaling}"
|
80 |
+
)
|
81 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
82 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
83 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
84 |
+
raise ValueError(
|
85 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
86 |
+
)
|
87 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
88 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.35.2"
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb35494fec06b7e79b40de07fe9551618284d667539270ef234c7baaaff600da
|
3 |
+
size 3113907664
|
modeling_svd_llama.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.utils.checkpoint
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
from transformers.activations import ACT2FN
|
9 |
+
from transformers.utils import logging
|
10 |
+
from transformers import LlamaForCausalLM
|
11 |
+
from .config_llama import SVD_LlamaConfig
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
|
15 |
+
_CONFIG_FOR_DOC = "SVD_LlamaConfig"
|
16 |
+
|
17 |
+
class LlamaRMSNorm(nn.Module):
|
18 |
+
def __init__(self, hidden_size, eps=1e-6):
|
19 |
+
"""
|
20 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
21 |
+
"""
|
22 |
+
super().__init__()
|
23 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
24 |
+
self.variance_epsilon = eps
|
25 |
+
|
26 |
+
def forward(self, hidden_states):
|
27 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
28 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
29 |
+
|
30 |
+
# convert into half-precision if necessary
|
31 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
32 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
33 |
+
|
34 |
+
return self.weight * hidden_states
|
35 |
+
|
36 |
+
|
37 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
38 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
39 |
+
super().__init__()
|
40 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
41 |
+
self.register_buffer("inv_freq", inv_freq)
|
42 |
+
|
43 |
+
# Build here to make `torch.jit.trace` work.
|
44 |
+
self.max_seq_len_cached = max_position_embeddings
|
45 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
46 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
47 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
48 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
49 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
50 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
51 |
+
|
52 |
+
def forward(self, x, seq_len=None):
|
53 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
54 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
55 |
+
if seq_len > self.max_seq_len_cached:
|
56 |
+
self.max_seq_len_cached = seq_len
|
57 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
58 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
59 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
60 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
61 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
62 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
63 |
+
return (
|
64 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
65 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
66 |
+
)
|
67 |
+
|
68 |
+
|
69 |
+
def rotate_half(x):
|
70 |
+
"""Rotates half the hidden dims of the input."""
|
71 |
+
x1 = x[..., : x.shape[-1] // 2]
|
72 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
73 |
+
return torch.cat((-x2, x1), dim=-1)
|
74 |
+
|
75 |
+
|
76 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
77 |
+
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
|
78 |
+
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
|
79 |
+
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
80 |
+
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
81 |
+
|
82 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
83 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
84 |
+
return q_embed, k_embed
|
85 |
+
|
86 |
+
|
87 |
+
class SVD_LlamaMLP(nn.Module):
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
config: SVD_LlamaConfig
|
91 |
+
):
|
92 |
+
super().__init__()
|
93 |
+
self.ratio = config.ratio
|
94 |
+
low_rank = int(config.intermediate_size * config.hidden_size * self.ratio / (config.intermediate_size + config.hidden_size))
|
95 |
+
self.gate_u_proj = nn.Linear(low_rank, config.intermediate_size, bias=False)
|
96 |
+
self.gate_v_proj = nn.Linear(config.hidden_size, low_rank, bias=False)
|
97 |
+
|
98 |
+
self.down_u_proj = nn.Linear(low_rank, config.hidden_size, bias=False)
|
99 |
+
self.down_v_proj = nn.Linear(config.intermediate_size, low_rank, bias=False)
|
100 |
+
|
101 |
+
self.up_u_proj = nn.Linear(low_rank, config.intermediate_size, bias=False)
|
102 |
+
self.up_v_proj = nn.Linear(config.hidden_size, low_rank, bias=False)
|
103 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
up = self.up_u_proj(self.up_v_proj(x))
|
107 |
+
gate = self.gate_u_proj(self.gate_v_proj(x))
|
108 |
+
return self.down_u_proj(self.down_v_proj(self.act_fn(gate) * up))
|
109 |
+
|
110 |
+
|
111 |
+
class SVD_LlamaAttention(nn.Module):
|
112 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
113 |
+
|
114 |
+
def __init__(self, config: SVD_LlamaConfig):
|
115 |
+
super().__init__()
|
116 |
+
self.config = config
|
117 |
+
self.hidden_size = config.hidden_size
|
118 |
+
self.num_heads = config.num_attention_heads
|
119 |
+
self.head_dim = self.hidden_size // self.num_heads
|
120 |
+
self.max_position_embeddings = config.max_position_embeddings
|
121 |
+
self.ratio = config.ratio # 1 means no truncate, just keep normal attn
|
122 |
+
|
123 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
124 |
+
raise ValueError(
|
125 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
126 |
+
f" and `num_heads`: {self.num_heads})."
|
127 |
+
)
|
128 |
+
low_rank = int(self.hidden_size * self.ratio/2)
|
129 |
+
self.q_u_proj = nn.Linear(low_rank, self.num_heads * self.head_dim, bias=False)
|
130 |
+
self.q_v_proj = nn.Linear(self.hidden_size, low_rank, bias=False)
|
131 |
+
|
132 |
+
self.k_u_proj = nn.Linear(low_rank, self.num_heads * self.head_dim, bias=False)
|
133 |
+
self.k_v_proj = nn.Linear(self.hidden_size, low_rank, bias=False)
|
134 |
+
|
135 |
+
self.v_u_proj = nn.Linear(low_rank, self.num_heads * self.head_dim, bias=False)
|
136 |
+
self.v_v_proj = nn.Linear(self.hidden_size, low_rank, bias=False)
|
137 |
+
|
138 |
+
self.o_u_proj = nn.Linear(low_rank, self.hidden_size, bias=False)
|
139 |
+
self.o_v_proj = nn.Linear(self.num_heads * self.head_dim, low_rank, bias=False)
|
140 |
+
|
141 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
142 |
+
|
143 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
144 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
145 |
+
|
146 |
+
def forward(
|
147 |
+
self,
|
148 |
+
hidden_states: torch.Tensor,
|
149 |
+
attention_mask: Optional[torch.Tensor] = None,
|
150 |
+
position_ids: Optional[torch.LongTensor] = None,
|
151 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
152 |
+
output_attentions: bool = False,
|
153 |
+
use_cache: bool = False,
|
154 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
155 |
+
bsz, q_len, _ = hidden_states.size()
|
156 |
+
|
157 |
+
query_states = self.q_u_proj(self.q_v_proj(hidden_states)).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
158 |
+
|
159 |
+
key_states = self.k_u_proj(self.k_v_proj(hidden_states)).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
160 |
+
|
161 |
+
value_states = self.v_u_proj(self.v_v_proj(hidden_states)).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
162 |
+
|
163 |
+
kv_seq_len = key_states.shape[-2]
|
164 |
+
if past_key_value is not None:
|
165 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
166 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
167 |
+
|
168 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
169 |
+
# [bsz, nh, t, hd]
|
170 |
+
|
171 |
+
if past_key_value is not None:
|
172 |
+
# reuse k, v, self_attention
|
173 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
174 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
175 |
+
|
176 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
177 |
+
|
178 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
179 |
+
|
180 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
181 |
+
raise ValueError(
|
182 |
+
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
183 |
+
f" {attn_weights.size()}"
|
184 |
+
)
|
185 |
+
|
186 |
+
if attention_mask is not None:
|
187 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
188 |
+
raise ValueError(
|
189 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
190 |
+
)
|
191 |
+
attn_weights = attn_weights + attention_mask
|
192 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device))
|
193 |
+
|
194 |
+
# upcast attention to fp32
|
195 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
196 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
197 |
+
|
198 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
199 |
+
raise ValueError(
|
200 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
201 |
+
f" {attn_output.size()}"
|
202 |
+
)
|
203 |
+
|
204 |
+
attn_output = attn_output.transpose(1, 2)
|
205 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
206 |
+
|
207 |
+
attn_output = self.o_u_proj(self.o_v_proj(attn_output))
|
208 |
+
|
209 |
+
if not output_attentions:
|
210 |
+
attn_weights = None
|
211 |
+
|
212 |
+
return attn_output, attn_weights, past_key_value
|
213 |
+
|
214 |
+
|
215 |
+
class SVD_LlamaForCausalLM(LlamaForCausalLM):
|
216 |
+
config_class = SVD_LlamaConfig
|
217 |
+
def __init__(self, config: SVD_LlamaConfig):
|
218 |
+
super().__init__(config)
|
219 |
+
for i in range(len(self.model.layers)):
|
220 |
+
self.model.layers[i].mlp = SVD_LlamaMLP(config=config)
|
221 |
+
self.model.layers[i].self_attn = SVD_LlamaAttention(config)
|