--- language: - en tags: - ResNet-50 --- # ResNet-50 ## Model Description ResNet-50 model from [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) paper. ## Original implementation Follow [this link](https://huggingface.co/microsoft/resnet-50) to see the original implementation. # How to use You can use the `base` model that returns `last_hidden_state`. ```python from transformers import AutoFeatureExtractor from onnxruntime import InferenceSession from datasets import load_dataset # load image dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] # load model feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50") session = InferenceSession("onnx/model.onnx") # ONNX Runtime expects NumPy arrays as input inputs = feature_extractor(image, return_tensors="np") outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs)) ``` Or you can use the model with classification head that returns `logits`. ```python from transformers import AutoFeatureExtractor from onnxruntime import InferenceSession from datasets import load_dataset # load image dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] # load model feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50") session = InferenceSession("onnx/model_cls.onnx") # ONNX Runtime expects NumPy arrays as input inputs = feature_extractor(image, return_tensors="np") outputs = session.run(output_names=["logits"], input_feed=dict(inputs)) ```