algorithmexplorer01
commited on
Commit
•
6f38d12
1
Parent(s):
faacacf
Upload 9 files
Browse files- LICENSE +201 -0
- README.md +3 -1
- config.json +33 -0
- configuration_bert.py +134 -0
- gitattributes +35 -0
- modeling_bert.py +1024 -0
- tokenizer.json +0 -0
- tokenizer_config.json +3 -0
- vocab.txt +0 -0
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright 2023 OctopusMind Authors. All rights reserved.
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
---
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "OctopusMind/longbert-8k-zh",
|
3 |
+
"architectures": [
|
4 |
+
"LongBertModel"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "OctopusMind/longbert-8k-zh--configuration_bert.LongBertConfig",
|
8 |
+
"AutoModel": "OctopusMind/longbert-8k-zh--modeling_bert.LongBertModel"
|
9 |
+
},
|
10 |
+
"attention_probs_dropout_prob": 0.1,
|
11 |
+
"directionality": "bidi",
|
12 |
+
"hidden_act": "gelu",
|
13 |
+
"hidden_dropout_prob": 0.1,
|
14 |
+
"hidden_size": 768,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"layer_norm_eps": 1e-12,
|
18 |
+
"max_position_embeddings": 8192,
|
19 |
+
"model_type": "bert",
|
20 |
+
"num_attention_heads": 12,
|
21 |
+
"num_hidden_layers": 12,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"pooler_fc_size": 768,
|
24 |
+
"pooler_num_attention_heads": 12,
|
25 |
+
"pooler_num_fc_layers": 3,
|
26 |
+
"pooler_size_per_head": 128,
|
27 |
+
"pooler_type": "first_token_transform",
|
28 |
+
"position_embedding_type": "alibi",
|
29 |
+
"torch_dtype": "float32",
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 21128,
|
32 |
+
"emb_pooler": "mean"
|
33 |
+
}
|
configuration_bert.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
# Copyright (c) 2023 octopus mind. All rights reserved.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
""" BERT model configuration"""
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class LongBertConfig(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`LongBertModel`]. It is used to
|
28 |
+
instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
|
29 |
+
configuration with the defaults will yield a similar configuration to that of the BERT
|
30 |
+
[bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture.
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
|
36 |
+
Args:
|
37 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
38 |
+
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
|
39 |
+
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
|
40 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
41 |
+
Dimensionality of the encoder layers and the pooler layer.
|
42 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
43 |
+
Number of hidden layers in the Transformer encoder.
|
44 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
45 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
46 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
47 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
48 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
49 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
50 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
51 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
52 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
53 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
54 |
+
The dropout ratio for the attention probabilities.
|
55 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
56 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
57 |
+
just in case (e.g., 512 or 1024 or 2048).
|
58 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
59 |
+
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
|
60 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
61 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
62 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
63 |
+
The epsilon used by the layer normalization layers.
|
64 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
65 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
66 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
67 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
68 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
69 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
70 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
71 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
72 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
73 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
74 |
+
relevant if `config.is_decoder=True`.
|
75 |
+
classifier_dropout (`float`, *optional*):
|
76 |
+
The dropout ratio for the classification head.
|
77 |
+
feed_forward_type (`str`, *optional*, defaults to `"original"`):
|
78 |
+
The type of feed forward layer to use in the bert layers.
|
79 |
+
Can be one of GLU variants, e.g. `"reglu"`, `"geglu"`
|
80 |
+
emb_pooler (`str`, *optional*, defaults to `None`):
|
81 |
+
The function to use for pooling the last layer embeddings to get the sentence embeddings.
|
82 |
+
Should be one of `None`, `"mean"`.
|
83 |
+
attn_implementation (`str`, *optional*, defaults to `"torch"`):
|
84 |
+
The implementation of the self-attention layer. Can be one of:
|
85 |
+
- `None` for the original implementation,
|
86 |
+
- `torch` for the PyTorch SDPA implementation,
|
87 |
+
|
88 |
+
"""
|
89 |
+
model_type = "bert"
|
90 |
+
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
vocab_size=21128,
|
94 |
+
hidden_size=768,
|
95 |
+
num_hidden_layers=12,
|
96 |
+
num_attention_heads=12,
|
97 |
+
intermediate_size=3072,
|
98 |
+
hidden_act="gelu",
|
99 |
+
hidden_dropout_prob=0.1,
|
100 |
+
attention_probs_dropout_prob=0.1,
|
101 |
+
max_position_embeddings=8192,
|
102 |
+
type_vocab_size=2,
|
103 |
+
initializer_range=0.02,
|
104 |
+
layer_norm_eps=1e-12,
|
105 |
+
pad_token_id=0,
|
106 |
+
position_embedding_type="absolute",
|
107 |
+
use_cache=True,
|
108 |
+
classifier_dropout=None,
|
109 |
+
feed_forward_type="original",
|
110 |
+
emb_pooler=None,
|
111 |
+
attn_implementation='torch',
|
112 |
+
**kwargs,
|
113 |
+
):
|
114 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
115 |
+
|
116 |
+
self.vocab_size = vocab_size
|
117 |
+
self.hidden_size = hidden_size
|
118 |
+
self.num_hidden_layers = num_hidden_layers
|
119 |
+
self.num_attention_heads = num_attention_heads
|
120 |
+
self.hidden_act = hidden_act
|
121 |
+
self.intermediate_size = intermediate_size
|
122 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
123 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
124 |
+
self.max_position_embeddings = max_position_embeddings
|
125 |
+
self.type_vocab_size = type_vocab_size
|
126 |
+
self.initializer_range = initializer_range
|
127 |
+
self.layer_norm_eps = layer_norm_eps
|
128 |
+
self.position_embedding_type = position_embedding_type
|
129 |
+
self.use_cache = use_cache
|
130 |
+
self.classifier_dropout = classifier_dropout
|
131 |
+
self.feed_forward_type = feed_forward_type
|
132 |
+
self.emb_pooler = emb_pooler
|
133 |
+
self.attn_implementation = attn_implementation
|
134 |
+
|
gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
modeling_bert.py
ADDED
@@ -0,0 +1,1024 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3 |
+
# you may not use this file except in compliance with the License.
|
4 |
+
# You may obtain a copy of the License at
|
5 |
+
#
|
6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7 |
+
#
|
8 |
+
# Unless required by applicable law or agreed to in writing, software
|
9 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
10 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11 |
+
# See the License for the specific language governing permissions and
|
12 |
+
# limitations under the License
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import numpy as np
|
16 |
+
import warnings
|
17 |
+
from dataclasses import dataclass
|
18 |
+
from typing import List, Optional, Tuple, Union
|
19 |
+
from transformers import AutoTokenizer
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
|
24 |
+
from transformers.activations import ACT2FN
|
25 |
+
from transformers.modeling_outputs import (
|
26 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
27 |
+
BaseModelOutputWithPoolingAndCrossAttentions
|
28 |
+
)
|
29 |
+
from transformers.modeling_utils import PreTrainedModel
|
30 |
+
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
31 |
+
from transformers.utils import (
|
32 |
+
ModelOutput,
|
33 |
+
logging)
|
34 |
+
from .configuration_bert import LongBertConfig
|
35 |
+
|
36 |
+
try:
|
37 |
+
from torch.nn.functional import scaled_dot_product_attention
|
38 |
+
except ImportError:
|
39 |
+
scaled_dot_product_attention = None
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
try:
|
43 |
+
from tqdm.autonotebook import trange
|
44 |
+
|
45 |
+
has_tqdm = True
|
46 |
+
except ImportError:
|
47 |
+
has_tqdm = False
|
48 |
+
|
49 |
+
|
50 |
+
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
|
51 |
+
"""Load tf checkpoints in a pytorch model."""
|
52 |
+
try:
|
53 |
+
import re
|
54 |
+
|
55 |
+
import numpy as np
|
56 |
+
import tensorflow as tf
|
57 |
+
except ImportError:
|
58 |
+
logger.error(
|
59 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
60 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
61 |
+
)
|
62 |
+
raise
|
63 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
64 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
65 |
+
# Load weights from TF model
|
66 |
+
init_vars = tf.train.list_variables(tf_path)
|
67 |
+
names = []
|
68 |
+
arrays = []
|
69 |
+
for name, shape in init_vars:
|
70 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
71 |
+
array = tf.train.load_variable(tf_path, name)
|
72 |
+
names.append(name)
|
73 |
+
arrays.append(array)
|
74 |
+
|
75 |
+
for name, array in zip(names, arrays):
|
76 |
+
name = name.split("/")
|
77 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
78 |
+
# which are not required for using pretrained model
|
79 |
+
if any(
|
80 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
81 |
+
for n in name
|
82 |
+
):
|
83 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
84 |
+
continue
|
85 |
+
pointer = model
|
86 |
+
for m_name in name:
|
87 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
88 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
89 |
+
else:
|
90 |
+
scope_names = [m_name]
|
91 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
92 |
+
pointer = getattr(pointer, "weight")
|
93 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
94 |
+
pointer = getattr(pointer, "bias")
|
95 |
+
elif scope_names[0] == "output_weights":
|
96 |
+
pointer = getattr(pointer, "weight")
|
97 |
+
elif scope_names[0] == "squad":
|
98 |
+
pointer = getattr(pointer, "classifier")
|
99 |
+
else:
|
100 |
+
try:
|
101 |
+
pointer = getattr(pointer, scope_names[0])
|
102 |
+
except AttributeError:
|
103 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
104 |
+
continue
|
105 |
+
if len(scope_names) >= 2:
|
106 |
+
num = int(scope_names[1])
|
107 |
+
pointer = pointer[num]
|
108 |
+
if m_name[-11:] == "_embeddings":
|
109 |
+
pointer = getattr(pointer, "weight")
|
110 |
+
elif m_name == "kernel":
|
111 |
+
array = np.transpose(array)
|
112 |
+
try:
|
113 |
+
if pointer.shape != array.shape:
|
114 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
115 |
+
except AssertionError as e:
|
116 |
+
e.args += (pointer.shape, array.shape)
|
117 |
+
raise
|
118 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
119 |
+
pointer.data = torch.from_numpy(array)
|
120 |
+
return model
|
121 |
+
|
122 |
+
|
123 |
+
class LongBertEmbeddings(nn.Module):
|
124 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
125 |
+
|
126 |
+
def __init__(self, config):
|
127 |
+
super().__init__()
|
128 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
129 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
130 |
+
|
131 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
132 |
+
# any TensorFlow checkpoint file
|
133 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
134 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
135 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
136 |
+
|
137 |
+
def forward(
|
138 |
+
self,
|
139 |
+
input_ids: Optional[torch.LongTensor] = None,
|
140 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
141 |
+
inputs_embeds: Optional[torch.FloatTensor] = None
|
142 |
+
) -> torch.Tensor:
|
143 |
+
if input_ids is not None:
|
144 |
+
input_shape = input_ids.size()
|
145 |
+
else:
|
146 |
+
input_shape = inputs_embeds.size()[:-1]
|
147 |
+
|
148 |
+
seq_length = input_shape[1]
|
149 |
+
|
150 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
151 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
152 |
+
# issue #5664
|
153 |
+
if token_type_ids is None:
|
154 |
+
if hasattr(self, "token_type_ids"):
|
155 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
156 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
157 |
+
token_type_ids = buffered_token_type_ids_expanded
|
158 |
+
else:
|
159 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
160 |
+
|
161 |
+
if inputs_embeds is None:
|
162 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
163 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
164 |
+
|
165 |
+
embeddings = inputs_embeds + token_type_embeddings
|
166 |
+
embeddings = self.LayerNorm(embeddings)
|
167 |
+
embeddings = self.dropout(embeddings)
|
168 |
+
return embeddings
|
169 |
+
|
170 |
+
|
171 |
+
class LongBertSelfAttention(nn.Module):
|
172 |
+
def __init__(self, config, position_embedding_type=None):
|
173 |
+
super().__init__()
|
174 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
175 |
+
raise ValueError(
|
176 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
177 |
+
f"heads ({config.num_attention_heads})"
|
178 |
+
)
|
179 |
+
|
180 |
+
self.num_attention_heads = config.num_attention_heads
|
181 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
182 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
183 |
+
|
184 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
185 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
186 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
187 |
+
|
188 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
189 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
190 |
+
config, "position_embedding_type", "alibi"
|
191 |
+
)
|
192 |
+
self.is_decoder = config.is_decoder
|
193 |
+
|
194 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
195 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
196 |
+
x = x.view(new_x_shape)
|
197 |
+
return x.permute(0, 2, 1, 3)
|
198 |
+
|
199 |
+
def forward(
|
200 |
+
self,
|
201 |
+
hidden_states: torch.Tensor,
|
202 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
203 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
204 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
205 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
206 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
207 |
+
output_attentions: Optional[bool] = False,
|
208 |
+
bias: Optional[torch.FloatTensor] = None,
|
209 |
+
) -> Tuple[torch.Tensor]:
|
210 |
+
mixed_query_layer = self.query(hidden_states)
|
211 |
+
|
212 |
+
# If this is instantiated as a cross-attention module, the keys
|
213 |
+
# and values come from an encoder; the attention mask needs to be
|
214 |
+
# such that the encoder's padding tokens are not attended to.
|
215 |
+
is_cross_attention = encoder_hidden_states is not None
|
216 |
+
|
217 |
+
if is_cross_attention and past_key_value is not None:
|
218 |
+
# reuse k,v, cross_attentions
|
219 |
+
key_layer = past_key_value[0]
|
220 |
+
value_layer = past_key_value[1]
|
221 |
+
attention_mask = encoder_attention_mask
|
222 |
+
elif is_cross_attention:
|
223 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
224 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
225 |
+
attention_mask = encoder_attention_mask
|
226 |
+
elif past_key_value is not None:
|
227 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
228 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
229 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
230 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
231 |
+
else:
|
232 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
233 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
234 |
+
|
235 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
236 |
+
|
237 |
+
use_cache = past_key_value is not None
|
238 |
+
if self.is_decoder:
|
239 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
240 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
241 |
+
# key/value_states (first "if" case)
|
242 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
243 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
244 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
245 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
246 |
+
past_key_value = (key_layer, value_layer)
|
247 |
+
|
248 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
249 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
250 |
+
|
251 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
252 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
253 |
+
if use_cache:
|
254 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
255 |
+
-1, 1
|
256 |
+
)
|
257 |
+
else:
|
258 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
259 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
260 |
+
distance = position_ids_l - position_ids_r
|
261 |
+
|
262 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
263 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
264 |
+
|
265 |
+
if self.position_embedding_type == "relative_key":
|
266 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
267 |
+
attention_scores = attention_scores + relative_position_scores
|
268 |
+
elif self.position_embedding_type == "relative_key_query":
|
269 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
270 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
271 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
272 |
+
|
273 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
274 |
+
if attention_mask is not None:
|
275 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
276 |
+
attention_scores = attention_scores + attention_mask
|
277 |
+
|
278 |
+
# Normalize the attention scores to probabilities.
|
279 |
+
attention_probs = nn.functional.softmax(attention_scores + bias, dim=-1)
|
280 |
+
|
281 |
+
# This is actually dropping out entire tokens to attend to, which might
|
282 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
283 |
+
attention_probs = self.dropout(attention_probs)
|
284 |
+
|
285 |
+
# Mask heads if we want to
|
286 |
+
if head_mask is not None:
|
287 |
+
attention_probs = attention_probs * head_mask
|
288 |
+
|
289 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
290 |
+
|
291 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
292 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
293 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
294 |
+
|
295 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
296 |
+
|
297 |
+
if self.is_decoder:
|
298 |
+
outputs = outputs + (past_key_value,)
|
299 |
+
return outputs
|
300 |
+
|
301 |
+
|
302 |
+
class LongBertSelfOutput(nn.Module):
|
303 |
+
def __init__(self, config):
|
304 |
+
super().__init__()
|
305 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
306 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
307 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
308 |
+
|
309 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
310 |
+
hidden_states = self.dense(hidden_states)
|
311 |
+
hidden_states = self.dropout(hidden_states)
|
312 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
313 |
+
return hidden_states
|
314 |
+
|
315 |
+
|
316 |
+
class LongBertAttention(nn.Module):
|
317 |
+
def __init__(self, config, position_embedding_type=None):
|
318 |
+
super().__init__()
|
319 |
+
self.self = LongBertSelfAttention(config, position_embedding_type=position_embedding_type)
|
320 |
+
self.output = LongBertSelfOutput(config)
|
321 |
+
self.pruned_heads = set()
|
322 |
+
|
323 |
+
def prune_heads(self, heads):
|
324 |
+
if len(heads) == 0:
|
325 |
+
return
|
326 |
+
heads, index = find_pruneable_heads_and_indices(
|
327 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
328 |
+
)
|
329 |
+
|
330 |
+
# Prune linear layers
|
331 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
332 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
333 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
334 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
335 |
+
|
336 |
+
# Update hyper params and store pruned heads
|
337 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
338 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
339 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
340 |
+
|
341 |
+
def forward(
|
342 |
+
self,
|
343 |
+
hidden_states: torch.Tensor,
|
344 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
345 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
346 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
347 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
348 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
349 |
+
output_attentions: Optional[bool] = False,
|
350 |
+
bias: Optional[torch.FloatTensor] = None,
|
351 |
+
) -> Tuple[torch.Tensor]:
|
352 |
+
self_outputs = self.self(
|
353 |
+
hidden_states,
|
354 |
+
attention_mask,
|
355 |
+
head_mask,
|
356 |
+
encoder_hidden_states,
|
357 |
+
encoder_attention_mask,
|
358 |
+
past_key_value,
|
359 |
+
output_attentions,
|
360 |
+
bias,
|
361 |
+
)
|
362 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
363 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
364 |
+
return outputs
|
365 |
+
|
366 |
+
|
367 |
+
class LongBertIntermediate(nn.Module):
|
368 |
+
def __init__(self, config):
|
369 |
+
super().__init__()
|
370 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
371 |
+
if isinstance(config.hidden_act, str):
|
372 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
373 |
+
else:
|
374 |
+
self.intermediate_act_fn = config.hidden_act
|
375 |
+
|
376 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
377 |
+
hidden_states = self.dense(hidden_states)
|
378 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
379 |
+
return hidden_states
|
380 |
+
|
381 |
+
|
382 |
+
class LongBertOutput(nn.Module):
|
383 |
+
def __init__(self, config):
|
384 |
+
super().__init__()
|
385 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
386 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
387 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
388 |
+
|
389 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
390 |
+
hidden_states = self.dense(hidden_states)
|
391 |
+
hidden_states = self.dropout(hidden_states)
|
392 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
393 |
+
return hidden_states
|
394 |
+
|
395 |
+
|
396 |
+
class LongBertLayer(nn.Module):
|
397 |
+
def __init__(self, config):
|
398 |
+
super().__init__()
|
399 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
400 |
+
self.seq_len_dim = 1
|
401 |
+
self.attention = LongBertAttention(config)
|
402 |
+
self.is_decoder = config.is_decoder
|
403 |
+
self.add_cross_attention = config.add_cross_attention
|
404 |
+
if self.add_cross_attention:
|
405 |
+
if not self.is_decoder:
|
406 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
407 |
+
self.crossattention = LongBertAttention(config, position_embedding_type="absolute")
|
408 |
+
self.intermediate = LongBertIntermediate(config)
|
409 |
+
self.output = LongBertOutput(config)
|
410 |
+
|
411 |
+
def forward(
|
412 |
+
self,
|
413 |
+
hidden_states: torch.Tensor,
|
414 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
415 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
416 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
417 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
418 |
+
bias: Optional[torch.FloatTensor] = None,
|
419 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
420 |
+
output_attentions: Optional[bool] = False,
|
421 |
+
) -> Tuple[torch.Tensor]:
|
422 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
423 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
424 |
+
self_attention_outputs = self.attention(
|
425 |
+
hidden_states,
|
426 |
+
attention_mask,
|
427 |
+
head_mask,
|
428 |
+
output_attentions=output_attentions,
|
429 |
+
past_key_value=self_attn_past_key_value,
|
430 |
+
bias=bias,
|
431 |
+
)
|
432 |
+
attention_output = self_attention_outputs[0]
|
433 |
+
|
434 |
+
# if decoder, the last output is tuple of self-attn cache
|
435 |
+
if self.is_decoder:
|
436 |
+
outputs = self_attention_outputs[1:-1]
|
437 |
+
present_key_value = self_attention_outputs[-1]
|
438 |
+
else:
|
439 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
440 |
+
|
441 |
+
cross_attn_present_key_value = None
|
442 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
443 |
+
if not hasattr(self, "crossattention"):
|
444 |
+
raise ValueError(
|
445 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
446 |
+
" by setting `config.add_cross_attention=True`"
|
447 |
+
)
|
448 |
+
|
449 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
450 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
451 |
+
cross_attention_outputs = self.crossattention(
|
452 |
+
attention_output,
|
453 |
+
attention_mask,
|
454 |
+
head_mask,
|
455 |
+
encoder_hidden_states,
|
456 |
+
encoder_attention_mask,
|
457 |
+
cross_attn_past_key_value,
|
458 |
+
output_attentions,
|
459 |
+
)
|
460 |
+
attention_output = cross_attention_outputs[0]
|
461 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
462 |
+
|
463 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
464 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
465 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
466 |
+
|
467 |
+
layer_output = apply_chunking_to_forward(
|
468 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
469 |
+
)
|
470 |
+
outputs = (layer_output,) + outputs
|
471 |
+
|
472 |
+
# if decoder, return the attn key/values as the last output
|
473 |
+
if self.is_decoder:
|
474 |
+
outputs = outputs + (present_key_value,)
|
475 |
+
|
476 |
+
return outputs
|
477 |
+
|
478 |
+
def feed_forward_chunk(self, attention_output):
|
479 |
+
intermediate_output = self.intermediate(attention_output)
|
480 |
+
layer_output = self.output(intermediate_output, attention_output)
|
481 |
+
return layer_output
|
482 |
+
|
483 |
+
|
484 |
+
class LongBertEncoder(nn.Module):
|
485 |
+
def __init__(self, config):
|
486 |
+
super().__init__()
|
487 |
+
self.config = config
|
488 |
+
self.layer = nn.ModuleList([LongBertLayer(config) for _ in range(config.num_hidden_layers)])
|
489 |
+
self.gradient_checkpointing = False
|
490 |
+
self.num_attention_heads = config.num_attention_heads
|
491 |
+
self.register_buffer(
|
492 |
+
"alibi",
|
493 |
+
self.rebuild_alibi_tensor(size=config.max_position_embeddings),
|
494 |
+
persistent=False,
|
495 |
+
)
|
496 |
+
|
497 |
+
def rebuild_alibi_tensor(
|
498 |
+
self, size: int, device: Optional[Union[torch.device, str]] = None
|
499 |
+
):
|
500 |
+
# Alibi
|
501 |
+
# Following https://github.com/ofirpress/attention_with_linear_biases/issues/5 (Implementation 1)
|
502 |
+
# In the causal case, you can exploit the fact that softmax is invariant to a uniform translation
|
503 |
+
# of the logits, which makes the math work out *after* applying causal masking. If no causal masking
|
504 |
+
# will be applied, it is necessary to construct the diagonal mask.
|
505 |
+
n_heads = self.num_attention_heads
|
506 |
+
|
507 |
+
def _get_alibi_head_slopes(n_heads: int) -> List[float]:
|
508 |
+
def get_slopes_power_of_2(n):
|
509 |
+
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
|
510 |
+
ratio = start
|
511 |
+
return [start * ratio ** i for i in range(n)]
|
512 |
+
|
513 |
+
if math.log2(n_heads).is_integer():
|
514 |
+
return get_slopes_power_of_2(
|
515 |
+
n_heads
|
516 |
+
) # In the paper, we only train models that have 2^a heads for some a. This function has
|
517 |
+
else: # some good properties that only occur when the input is a power of 2. To maintain that even
|
518 |
+
closest_power_of_2 = 2 ** math.floor(
|
519 |
+
math.log2(n_heads)
|
520 |
+
) # when the number of heads is not a power of 2, we use this workaround.
|
521 |
+
return (
|
522 |
+
get_slopes_power_of_2(closest_power_of_2)
|
523 |
+
+ _get_alibi_head_slopes(2 * closest_power_of_2)[0::2][
|
524 |
+
: n_heads - closest_power_of_2
|
525 |
+
]
|
526 |
+
)
|
527 |
+
|
528 |
+
context_position = torch.arange(size, device=device)[:, None]
|
529 |
+
memory_position = torch.arange(size, device=device)[None, :]
|
530 |
+
relative_position = torch.abs(memory_position - context_position)
|
531 |
+
# [n_heads, max_token_length, max_token_length]
|
532 |
+
relative_position = relative_position.unsqueeze(0).expand(n_heads, -1, -1)
|
533 |
+
slopes = torch.Tensor(_get_alibi_head_slopes(n_heads)).to(device) * -1
|
534 |
+
alibi = slopes.unsqueeze(1).unsqueeze(1) * relative_position
|
535 |
+
# [1, n_heads, max_token_length, max_token_length]
|
536 |
+
alibi = alibi.unsqueeze(0)
|
537 |
+
assert alibi.shape == torch.Size([1, n_heads, size, size])
|
538 |
+
|
539 |
+
self._current_alibi_size = size
|
540 |
+
return alibi
|
541 |
+
|
542 |
+
def forward(
|
543 |
+
self,
|
544 |
+
hidden_states: torch.Tensor,
|
545 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
546 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
547 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
548 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
549 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
550 |
+
use_cache: Optional[bool] = None,
|
551 |
+
output_attentions: Optional[bool] = False,
|
552 |
+
output_hidden_states: Optional[bool] = False,
|
553 |
+
return_dict: Optional[bool] = True,
|
554 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
555 |
+
all_hidden_states = () if output_hidden_states else None
|
556 |
+
all_self_attentions = () if output_attentions else None
|
557 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
558 |
+
# Add alibi matrix to extended_attention_mask
|
559 |
+
_, seqlen, _ = hidden_states.size()
|
560 |
+
if self._current_alibi_size < seqlen:
|
561 |
+
# Rebuild the alibi tensor when needed
|
562 |
+
warnings.warn(
|
563 |
+
f'Increasing alibi size from {self._current_alibi_size} to {seqlen}.'
|
564 |
+
)
|
565 |
+
self.register_buffer(
|
566 |
+
"alibi",
|
567 |
+
self.rebuild_alibi_tensor(size=seqlen, device=hidden_states.device).to(
|
568 |
+
hidden_states.dtype
|
569 |
+
),
|
570 |
+
persistent=False,
|
571 |
+
)
|
572 |
+
elif self.alibi.device != hidden_states.device:
|
573 |
+
# Device catch-up
|
574 |
+
self.alibi = self.alibi.to(hidden_states.device)
|
575 |
+
|
576 |
+
alibi_bias = self.alibi[:, :, :seqlen, :seqlen]
|
577 |
+
if self.gradient_checkpointing and self.training:
|
578 |
+
if use_cache:
|
579 |
+
logger.warning_once(
|
580 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
581 |
+
)
|
582 |
+
use_cache = False
|
583 |
+
|
584 |
+
next_decoder_cache = () if use_cache else None
|
585 |
+
for i, layer_module in enumerate(self.layer):
|
586 |
+
if output_hidden_states:
|
587 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
588 |
+
|
589 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
590 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
591 |
+
|
592 |
+
if self.gradient_checkpointing and self.training:
|
593 |
+
|
594 |
+
def create_custom_forward(module):
|
595 |
+
def custom_forward(*inputs):
|
596 |
+
return module(*inputs, past_key_value, output_attentions)
|
597 |
+
|
598 |
+
return custom_forward
|
599 |
+
|
600 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
601 |
+
create_custom_forward(layer_module),
|
602 |
+
hidden_states,
|
603 |
+
attention_mask,
|
604 |
+
layer_head_mask,
|
605 |
+
encoder_hidden_states,
|
606 |
+
encoder_attention_mask,
|
607 |
+
)
|
608 |
+
else:
|
609 |
+
layer_outputs = layer_module(
|
610 |
+
hidden_states,
|
611 |
+
attention_mask,
|
612 |
+
layer_head_mask,
|
613 |
+
encoder_hidden_states,
|
614 |
+
encoder_attention_mask,
|
615 |
+
alibi_bias,
|
616 |
+
past_key_value,
|
617 |
+
output_attentions,
|
618 |
+
)
|
619 |
+
|
620 |
+
hidden_states = layer_outputs[0]
|
621 |
+
if use_cache:
|
622 |
+
next_decoder_cache += (layer_outputs[-1],)
|
623 |
+
if output_attentions:
|
624 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
625 |
+
if self.config.add_cross_attention:
|
626 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
627 |
+
|
628 |
+
if output_hidden_states:
|
629 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
630 |
+
|
631 |
+
if not return_dict:
|
632 |
+
return tuple(
|
633 |
+
v
|
634 |
+
for v in [
|
635 |
+
hidden_states,
|
636 |
+
next_decoder_cache,
|
637 |
+
all_hidden_states,
|
638 |
+
all_self_attentions,
|
639 |
+
all_cross_attentions,
|
640 |
+
]
|
641 |
+
if v is not None
|
642 |
+
)
|
643 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
644 |
+
last_hidden_state=hidden_states,
|
645 |
+
past_key_values=next_decoder_cache,
|
646 |
+
hidden_states=all_hidden_states,
|
647 |
+
attentions=all_self_attentions,
|
648 |
+
cross_attentions=all_cross_attentions,
|
649 |
+
)
|
650 |
+
|
651 |
+
|
652 |
+
class LongBertPooler(nn.Module):
|
653 |
+
def __init__(self, config):
|
654 |
+
super().__init__()
|
655 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
656 |
+
self.activation = nn.Tanh()
|
657 |
+
|
658 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
659 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
660 |
+
# to the first token.
|
661 |
+
first_token_tensor = hidden_states[:, 0]
|
662 |
+
pooled_output = self.dense(first_token_tensor)
|
663 |
+
pooled_output = self.activation(pooled_output)
|
664 |
+
return pooled_output
|
665 |
+
|
666 |
+
|
667 |
+
class LongBertPreTrainedModel(PreTrainedModel):
|
668 |
+
"""
|
669 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
670 |
+
models.
|
671 |
+
"""
|
672 |
+
|
673 |
+
config_class = LongBertConfig
|
674 |
+
load_tf_weights = load_tf_weights_in_bert
|
675 |
+
base_model_prefix = "bert"
|
676 |
+
supports_gradient_checkpointing = True
|
677 |
+
|
678 |
+
def _init_weights(self, module):
|
679 |
+
"""Initialize the weights"""
|
680 |
+
if isinstance(module, nn.Linear):
|
681 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
682 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
683 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
684 |
+
if module.bias is not None:
|
685 |
+
module.bias.data.zero_()
|
686 |
+
elif isinstance(module, nn.Embedding):
|
687 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
688 |
+
if module.padding_idx is not None:
|
689 |
+
module.weight.data[module.padding_idx].zero_()
|
690 |
+
elif isinstance(module, nn.LayerNorm):
|
691 |
+
module.bias.data.zero_()
|
692 |
+
module.weight.data.fill_(1.0)
|
693 |
+
|
694 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
695 |
+
if isinstance(module, LongBertEncoder):
|
696 |
+
module.gradient_checkpointing = value
|
697 |
+
|
698 |
+
|
699 |
+
@dataclass
|
700 |
+
class LongBertForPreTrainingOutput(ModelOutput):
|
701 |
+
"""
|
702 |
+
Output type of [`BertForPreTraining`].
|
703 |
+
|
704 |
+
Args:
|
705 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
706 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
707 |
+
(classification) loss.
|
708 |
+
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
709 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
710 |
+
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
|
711 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
712 |
+
before SoftMax).
|
713 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
714 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
715 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
716 |
+
|
717 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
718 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
719 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
720 |
+
sequence_length)`.
|
721 |
+
|
722 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
723 |
+
heads.
|
724 |
+
"""
|
725 |
+
|
726 |
+
loss: Optional[torch.FloatTensor] = None
|
727 |
+
prediction_logits: torch.FloatTensor = None
|
728 |
+
seq_relationship_logits: torch.FloatTensor = None
|
729 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
730 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
731 |
+
|
732 |
+
|
733 |
+
class LongBertModel(LongBertPreTrainedModel):
|
734 |
+
"""
|
735 |
+
|
736 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
737 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
738 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
739 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
740 |
+
|
741 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
742 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
743 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
744 |
+
"""
|
745 |
+
|
746 |
+
def __init__(self, config, add_pooling_layer=True):
|
747 |
+
super().__init__(config)
|
748 |
+
self.config = config
|
749 |
+
self.embeddings = LongBertEmbeddings(config)
|
750 |
+
self.encoder = LongBertEncoder(config)
|
751 |
+
|
752 |
+
self.pooler = LongBertPooler(config) if add_pooling_layer else None
|
753 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config._name_or_path)
|
754 |
+
# Initialize weights and apply final processing
|
755 |
+
self.post_init()
|
756 |
+
|
757 |
+
def get_input_embeddings(self):
|
758 |
+
return self.embeddings.word_embeddings
|
759 |
+
|
760 |
+
def set_input_embeddings(self, value):
|
761 |
+
self.embeddings.word_embeddings = value
|
762 |
+
|
763 |
+
def _prune_heads(self, heads_to_prune):
|
764 |
+
"""
|
765 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
766 |
+
class PreTrainedModel
|
767 |
+
"""
|
768 |
+
for layer, heads in heads_to_prune.items():
|
769 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
770 |
+
|
771 |
+
def forward(
|
772 |
+
self,
|
773 |
+
input_ids: Optional[torch.Tensor] = None,
|
774 |
+
attention_mask: Optional[torch.Tensor] = None,
|
775 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
776 |
+
head_mask: Optional[torch.Tensor] = None,
|
777 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
778 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
779 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
780 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
781 |
+
use_cache: Optional[bool] = None,
|
782 |
+
output_attentions: Optional[bool] = None,
|
783 |
+
output_hidden_states: Optional[bool] = None,
|
784 |
+
return_dict: Optional[bool] = None,
|
785 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
786 |
+
r"""
|
787 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
788 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
789 |
+
the model is configured as a decoder.
|
790 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
791 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
792 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
793 |
+
|
794 |
+
- 1 for tokens that are **not masked**,
|
795 |
+
- 0 for tokens that are **masked**.
|
796 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
797 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
798 |
+
|
799 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
800 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
801 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
802 |
+
use_cache (`bool`, *optional*):
|
803 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
804 |
+
`past_key_values`).
|
805 |
+
"""
|
806 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
807 |
+
output_hidden_states = (
|
808 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
809 |
+
)
|
810 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
811 |
+
|
812 |
+
if self.config.is_decoder:
|
813 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
814 |
+
else:
|
815 |
+
use_cache = False
|
816 |
+
|
817 |
+
if input_ids is not None and inputs_embeds is not None:
|
818 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
819 |
+
elif input_ids is not None:
|
820 |
+
input_shape = input_ids.size()
|
821 |
+
elif inputs_embeds is not None:
|
822 |
+
input_shape = inputs_embeds.size()[:-1]
|
823 |
+
else:
|
824 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
825 |
+
|
826 |
+
batch_size, seq_length = input_shape
|
827 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
828 |
+
|
829 |
+
# past_key_values_length
|
830 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
831 |
+
|
832 |
+
if attention_mask is None:
|
833 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
834 |
+
|
835 |
+
if token_type_ids is None:
|
836 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
837 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
838 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
839 |
+
token_type_ids = buffered_token_type_ids_expanded
|
840 |
+
else:
|
841 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
842 |
+
|
843 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
844 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
845 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
846 |
+
|
847 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
848 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
849 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
850 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
851 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
852 |
+
if encoder_attention_mask is None:
|
853 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
854 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
855 |
+
else:
|
856 |
+
encoder_extended_attention_mask = None
|
857 |
+
|
858 |
+
# Prepare head mask if needed
|
859 |
+
# 1.0 in head_mask indicate we keep the head
|
860 |
+
# attention_probs has shape bsz x n_heads x N x N
|
861 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
862 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
863 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
864 |
+
|
865 |
+
embedding_output = self.embeddings(
|
866 |
+
input_ids=input_ids,
|
867 |
+
token_type_ids=token_type_ids,
|
868 |
+
inputs_embeds=inputs_embeds
|
869 |
+
)
|
870 |
+
encoder_outputs = self.encoder(
|
871 |
+
embedding_output,
|
872 |
+
attention_mask=extended_attention_mask,
|
873 |
+
head_mask=head_mask,
|
874 |
+
encoder_hidden_states=encoder_hidden_states,
|
875 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
876 |
+
past_key_values=past_key_values,
|
877 |
+
use_cache=use_cache,
|
878 |
+
output_attentions=output_attentions,
|
879 |
+
output_hidden_states=output_hidden_states,
|
880 |
+
return_dict=return_dict,
|
881 |
+
)
|
882 |
+
sequence_output = encoder_outputs[0]
|
883 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
884 |
+
|
885 |
+
if not return_dict:
|
886 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
887 |
+
|
888 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
889 |
+
last_hidden_state=sequence_output,
|
890 |
+
pooler_output=pooled_output,
|
891 |
+
past_key_values=encoder_outputs.past_key_values,
|
892 |
+
hidden_states=encoder_outputs.hidden_states,
|
893 |
+
attentions=encoder_outputs.attentions,
|
894 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
895 |
+
)
|
896 |
+
|
897 |
+
def encode(self,
|
898 |
+
sentences: Union[str, List[str]],
|
899 |
+
batch_size: int = 32,
|
900 |
+
show_progress_bar: Optional[bool] = None,
|
901 |
+
output_value: str = 'sentence_embedding',
|
902 |
+
convert_to_numpy: bool = True,
|
903 |
+
convert_to_tensor: bool = False,
|
904 |
+
device: Optional[torch.device] = "cpu",
|
905 |
+
normalize_embeddings: bool = False,
|
906 |
+
**tokenizer_kwargs,
|
907 |
+
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
908 |
+
"""
|
909 |
+
Computes sentence embeddings
|
910 |
+
|
911 |
+
Args:
|
912 |
+
sentences(`str` or `List[str]`):
|
913 |
+
Sentence or sentences to be encoded
|
914 |
+
batch_size(`int`, *optional*, defaults to 32):
|
915 |
+
Batch size for the computation
|
916 |
+
show_progress_bar(`bool`, *optional*, defaults to None):
|
917 |
+
Show a progress bar when encoding sentences.
|
918 |
+
If set to None, progress bar is only shown when `logger.level == logging.INFO` or `logger.level == logging.DEBUG`.
|
919 |
+
output_value(`str`, *optional*, defaults to 'sentence_embedding'):
|
920 |
+
Default sentence_embedding, to get sentence embeddings.
|
921 |
+
Can be set to token_embeddings to get wordpiece token embeddings.
|
922 |
+
Set to None, to get all output values
|
923 |
+
convert_to_numpy(`bool`, *optional*, defaults to True):
|
924 |
+
If true, the output is a list of numpy vectors.
|
925 |
+
Else, it is a list of pytorch tensors.
|
926 |
+
convert_to_tensor(`bool`, *optional*, defaults to False):
|
927 |
+
If true, you get one large tensor as return.
|
928 |
+
Overwrites any setting from convert_to_numpy
|
929 |
+
device(`torch.device`, *optional*, defaults to None):
|
930 |
+
Which torch.device to use for the computation
|
931 |
+
normalize_embeddings(`bool`, *optional*, defaults to False):
|
932 |
+
If set to true, returned vectors will have length 1. In that case, the faster dot-product (util.dot_score) instead of cosine similarity can be used.
|
933 |
+
tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
|
934 |
+
Keyword arguments for the tokenizer
|
935 |
+
|
936 |
+
Returns:
|
937 |
+
By default, a list of tensors is returned.
|
938 |
+
If convert_to_tensor, a stacked tensor is returned.
|
939 |
+
If convert_to_numpy, a numpy matrix is returned.
|
940 |
+
"""
|
941 |
+
|
942 |
+
if convert_to_tensor:
|
943 |
+
convert_to_numpy = False
|
944 |
+
|
945 |
+
if output_value != 'sentence_embedding':
|
946 |
+
convert_to_tensor = False
|
947 |
+
convert_to_numpy = False
|
948 |
+
|
949 |
+
input_was_string = False
|
950 |
+
if isinstance(sentences, str) or not hasattr(sentences, '__len__'):
|
951 |
+
sentences = [sentences]
|
952 |
+
input_was_string = True
|
953 |
+
|
954 |
+
# TODO: Maybe use better length heuristic?
|
955 |
+
permutation = np.argsort([-len(i) for i in sentences])
|
956 |
+
inverse_permutation = np.argsort(permutation)
|
957 |
+
sentences = [sentences[idx] for idx in permutation]
|
958 |
+
|
959 |
+
tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True)
|
960 |
+
tokenizer_kwargs['max_length'] = tokenizer_kwargs.get('max_length', 8192)
|
961 |
+
tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True)
|
962 |
+
|
963 |
+
all_embeddings = []
|
964 |
+
|
965 |
+
if has_tqdm:
|
966 |
+
range_iter = trange(
|
967 |
+
0,
|
968 |
+
len(sentences),
|
969 |
+
batch_size,
|
970 |
+
desc="Encoding",
|
971 |
+
disable=not show_progress_bar,
|
972 |
+
)
|
973 |
+
else:
|
974 |
+
range_iter = range(0, len(sentences), batch_size)
|
975 |
+
|
976 |
+
for i in range_iter:
|
977 |
+
encoded_input = self.tokenizer(
|
978 |
+
sentences[i: i + batch_size],
|
979 |
+
return_tensors='pt',
|
980 |
+
**tokenizer_kwargs,
|
981 |
+
)
|
982 |
+
for key in encoded_input.keys():
|
983 |
+
encoded_input[key] = encoded_input[key].to(self.device)
|
984 |
+
token_embs = self.forward(**encoded_input)[0]
|
985 |
+
# Accumulate in fp32 to avoid overflow
|
986 |
+
token_embs = token_embs.float()
|
987 |
+
|
988 |
+
if output_value == 'token_embeddings':
|
989 |
+
raise NotImplementedError
|
990 |
+
elif output_value is None:
|
991 |
+
raise NotImplementedError
|
992 |
+
else:
|
993 |
+
embeddings = self.mean_pooling(
|
994 |
+
token_embs, encoded_input['attention_mask']
|
995 |
+
)
|
996 |
+
|
997 |
+
if normalize_embeddings:
|
998 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
999 |
+
|
1000 |
+
if convert_to_numpy:
|
1001 |
+
embeddings = embeddings.cpu()
|
1002 |
+
all_embeddings.extend(embeddings)
|
1003 |
+
|
1004 |
+
all_embeddings = [all_embeddings[idx] for idx in inverse_permutation]
|
1005 |
+
|
1006 |
+
if convert_to_tensor:
|
1007 |
+
all_embeddings = torch.stack(all_embeddings)
|
1008 |
+
elif convert_to_numpy:
|
1009 |
+
all_embeddings = np.asarray([emb.detach().numpy() for emb in all_embeddings])
|
1010 |
+
|
1011 |
+
if input_was_string:
|
1012 |
+
all_embeddings = all_embeddings[0]
|
1013 |
+
return all_embeddings
|
1014 |
+
|
1015 |
+
def mean_pooling(self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor):
|
1016 |
+
input_mask_expanded = (
|
1017 |
+
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
1018 |
+
)
|
1019 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
|
1020 |
+
input_mask_expanded.sum(1), min=1e-9
|
1021 |
+
)
|
1022 |
+
|
1023 |
+
|
1024 |
+
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_lower_case": false
|
3 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|