File size: 2,640 Bytes
f703f1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: hubert-base-ls960-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.88
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hubert-base-ls960-finetuned-gtzan
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7650
- Accuracy: 0.88
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2258 | 1.0 | 225 | 1.9240 | 0.28 |
| 1.6083 | 2.0 | 450 | 1.4887 | 0.39 |
| 1.3983 | 3.0 | 675 | 1.3524 | 0.56 |
| 0.7368 | 4.0 | 900 | 1.3110 | 0.56 |
| 0.6121 | 5.0 | 1125 | 0.9572 | 0.72 |
| 0.1772 | 6.0 | 1350 | 0.8775 | 0.73 |
| 1.8666 | 7.0 | 1575 | 0.6078 | 0.82 |
| 0.091 | 8.0 | 1800 | 0.9999 | 0.76 |
| 0.0458 | 9.0 | 2025 | 0.7169 | 0.83 |
| 0.6817 | 10.0 | 2250 | 0.7614 | 0.86 |
| 0.7023 | 11.0 | 2475 | 0.9348 | 0.84 |
| 0.0047 | 12.0 | 2700 | 0.7222 | 0.88 |
| 0.0363 | 13.0 | 2925 | 0.7027 | 0.89 |
| 0.0073 | 14.0 | 3150 | 0.7440 | 0.88 |
| 0.0055 | 15.0 | 3375 | 0.7650 | 0.88 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|