--- license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: hubert-base-ls960-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- # hubert-base-ls960-finetuned-gtzan This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7650 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2258 | 1.0 | 225 | 1.9240 | 0.28 | | 1.6083 | 2.0 | 450 | 1.4887 | 0.39 | | 1.3983 | 3.0 | 675 | 1.3524 | 0.56 | | 0.7368 | 4.0 | 900 | 1.3110 | 0.56 | | 0.6121 | 5.0 | 1125 | 0.9572 | 0.72 | | 0.1772 | 6.0 | 1350 | 0.8775 | 0.73 | | 1.8666 | 7.0 | 1575 | 0.6078 | 0.82 | | 0.091 | 8.0 | 1800 | 0.9999 | 0.76 | | 0.0458 | 9.0 | 2025 | 0.7169 | 0.83 | | 0.6817 | 10.0 | 2250 | 0.7614 | 0.86 | | 0.7023 | 11.0 | 2475 | 0.9348 | 0.84 | | 0.0047 | 12.0 | 2700 | 0.7222 | 0.88 | | 0.0363 | 13.0 | 2925 | 0.7027 | 0.89 | | 0.0073 | 14.0 | 3150 | 0.7440 | 0.88 | | 0.0055 | 15.0 | 3375 | 0.7650 | 0.88 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0