File size: 6,980 Bytes
1d92242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7b92f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d92242
 
cadde44
 
1d92242
 
50764e2
e59d4f7
30f48bb
e59d4f7
 
 
1a30d8f
 
1d92242
 
 
 
 
 
30f48bb
 
a76b177
30f48bb
 
67136d1
a76b177
30f48bb
 
 
 
 
 
1d92242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38da3a8
7a7b92f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- mlabonne/AlphaMonarch-7B
- FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- OmnicromsBrain/NeuralStar-7b-Lazy
base_model:
- mlabonne/AlphaMonarch-7B
- FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- OmnicromsBrain/NeuralStar-7b-Lazy
model-index:
- name: NeuralStar_AlphaWriter_4x7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 70.22
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=OmnicromsBrain/NeuralStar_AlphaWriter_4x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 88.31
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=OmnicromsBrain/NeuralStar_AlphaWriter_4x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.6
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=OmnicromsBrain/NeuralStar_AlphaWriter_4x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 71.7
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=OmnicromsBrain/NeuralStar_AlphaWriter_4x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 82.0
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=OmnicromsBrain/NeuralStar_AlphaWriter_4x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.0
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=OmnicromsBrain/NeuralStar_AlphaWriter_4x7b
      name: Open LLM Leaderboard
---

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65c70c9e21d80a923d664563/ntyev6qExGVY3Ysg2D6-l.png)

# NeuralStar_AlphaWriter_4x7b

I was blown away by the writing results I was getting from mlabonne/Beyonder-4x7B-v3 while writing in [NovelCrafter](https://www.novelcrafter.com).

Inspired by his [LLM Course](https://github.com/mlabonne/llm-course) and fueled by his [LazyMergeKit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb).
I couldnt help but wonder what a writing model would be like if all 4 “experts” excelled in creative writing.

I present NeuralStar-AlphaWriter-4x7b: 


NeuralStar_AlphaWriter_4x7b is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
* [FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B](https://huggingface.co/FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B)
* [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B)
* [OmnicromsBrain/NeuralStar-7b-Lazy](https://huggingface.co/OmnicromsBrain/NeuralStar-7b-Lazy)

## ⚡ Quantized Models

Special thanks to MRadermacher for the Static and iMatrx quantized models

**.GGUF** https://huggingface.co/mradermacher/NeuralStar_AlphaWriter_4x7b-GGUF

**iMatrix** https://huggingface.co/mradermacher/NeuralStar_AlphaWriter_4x7b-i1-GGUF

Q4_K_M and Q5_K_M .gguf [**Here**](https://huggingface.co/OmnicromsBrain/NeuralStar_AlphaWriter_4x7b-GGUF) created with [mlabonne/Autogguf](https://colab.research.google.com/drive/1P646NEg33BZy4BfLDNpTz0V0lwIU3CHu)




## 🧩 Configuration

```yaml
base_model: mlabonne/AlphaMonarch-7B
experts:  
  - source_model: mlabonne/AlphaMonarch-7B
    positive_prompts: 
    - "chat"
    - "assistant"
    - "tell me"
    - "explain"
    - "I want"
  - source_model: FPHam/Karen_TheEditor_V2_STRICT_Mistral_7B
    positive_prompts:
    - "edit"
    - "rewrite"
    - "evaluate"
    - "spelling"
    - "grammer"
  - source_model: SanjiWatsuki/Kunoichi-DPO-v2-7B
    positive_prompts:
    - "storywriting"
    - "write"
    - "scene"
    - "prose"
    - "character"
  - source_model: OmnicromsBrain/NeuralStar-7b-Lazy
    positive_prompts:
    - "codex"
    - "plot"
    - "outline"
    - "scenebeat"
    - "count"
```

## 💻 Usage

```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "OmnicromsBrain/NeuralStar_AlphaWriter_4x7b"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_OmnicromsBrain__NeuralStar_AlphaWriter_4x7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |73.31|
|AI2 Reasoning Challenge (25-Shot)|70.22|
|HellaSwag (10-Shot)              |88.31|
|MMLU (5-Shot)                    |64.60|
|TruthfulQA (0-shot)              |71.70|
|Winogrande (5-shot)              |82.00|
|GSM8k (5-shot)                   |63.00|