File size: 9,994 Bytes
fe6094a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
---
language: en
license: apache-2.0
library_name: pytorch
tags:
- deep-reinforcement-learning
- reinforcement-learning
- DI-engine
- PongNoFrameskip-v4
benchmark_name: OpenAI/Gym/Atari
task_name: PongNoFrameskip-v4
pipeline_tag: reinforcement-learning
model-index:
- name: MuZero
  results:
  - task:
      type: reinforcement-learning
      name: reinforcement-learning
    dataset:
      name: PongNoFrameskip-v4
      type: PongNoFrameskip-v4
    metrics:
    - type: mean_reward
      value: 20.4 +/- 0.49
      name: mean_reward
---

# Play **PongNoFrameskip-v4** with **MuZero** Policy

## Model Description
<!-- Provide a longer summary of what this model is. -->

This implementation applies **MuZero** to the OpenAI/Gym/Atari **PongNoFrameskip-v4** environment using [LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine).

**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).

## Model Usage
### Install the Dependencies
<details close>
<summary>(Click for Details)</summary>

```shell
# install huggingface_ding
git clone https://github.com/opendilab/huggingface_ding.git
pip3 install -e ./huggingface_ding/
# install environment dependencies if needed

pip3 install DI-engine[common_env,video]
pip3 install LightZero

```
</details>

### Git Clone from Huggingface and Run the Model

<details close>
<summary>(Click for Details)</summary>

```shell
# running with trained model
python3 -u run.py
```
**run.py**
```python
from lzero.agent import MuZeroAgent
from ding.config import Config
from easydict import EasyDict
import torch

# Pull model from files which are git cloned from huggingface
policy_state_dict = torch.load("pytorch_model.bin", map_location=torch.device("cpu"))
cfg = EasyDict(Config.file_to_dict("policy_config.py").cfg_dict)
# Instantiate the agent
agent = MuZeroAgent(
    env_id="PongNoFrameskip-v4", exp_name="PongNoFrameskip-v4-MuZero", cfg=cfg.exp_config, policy_state_dict=policy_state_dict
)
# Continue training
agent.train(step=5000)
# Render the new agent performance
agent.deploy(enable_save_replay=True)

```
</details>

### Run Model by Using Huggingface_ding

<details close>
<summary>(Click for Details)</summary>

```shell
# running with trained model
python3 -u run.py
```
**run.py**
```python
from lzero.agent import MuZeroAgent
from huggingface_ding import pull_model_from_hub

# Pull model from Hugggingface hub
policy_state_dict, cfg = pull_model_from_hub(repo_id="OpenDILabCommunity/PongNoFrameskip-v4-MuZero")
# Instantiate the agent
agent = MuZeroAgent(
    env_id="PongNoFrameskip-v4", exp_name="PongNoFrameskip-v4-MuZero", cfg=cfg.exp_config, policy_state_dict=policy_state_dict
)
# Continue training
agent.train(step=5000)
# Render the new agent performance
agent.deploy(enable_save_replay=True)

```
</details>

## Model Training

### Train the Model and Push to Huggingface_hub

<details close>
<summary>(Click for Details)</summary>

```shell
#Training Your Own Agent
python3 -u train.py
```
**train.py**
```python
from lzero.agent import MuZeroAgent
from huggingface_ding import push_model_to_hub

# Instantiate the agent
agent = MuZeroAgent(env_id="PongNoFrameskip-v4", exp_name="PongNoFrameskip-v4-MuZero")
# Train the agent
return_ = agent.train(step=int(500000))
# Push model to huggingface hub
push_model_to_hub(
    agent=agent.best,
    env_name="OpenAI/Gym/Atari",
    task_name="PongNoFrameskip-v4",
    algo_name="MuZero",
    github_repo_url="https://github.com/opendilab/LightZero",
    github_doc_model_url=None,
    github_doc_env_url=None,
    installation_guide='''
pip3 install DI-engine[common_env,video]
pip3 install LightZero
''',
    usage_file_by_git_clone="./muzero/pong_muzero_deploy.py",
    usage_file_by_huggingface_ding="./muzero/pong_muzero_download.py",
    train_file="./muzero/pong_muzero.py",
    repo_id="OpenDILabCommunity/PongNoFrameskip-v4-MuZero",
    platform_info="[LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine)",
    model_description="**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).",
    create_repo=True
)

```
</details>

**Configuration**
<details close>
<summary>(Click for Details)</summary>


```python
exp_config = {
    'main_config': {
        'exp_name': 'PongNoFrameskip-v4-MuZero',
        'seed': 0,
        'env': {
            'stop_value': 1000000,
            'env_id': 'PongNoFrameskip-v4',
            'env_name': 'PongNoFrameskip-v4',
            'obs_shape': [4, 96, 96],
            'collector_env_num': 8,
            'evaluator_env_num': 3,
            'n_evaluator_episode': 3,
            'manager': {
                'shared_memory': False
            }
        },
        'policy': {
            'on_policy': False,
            'cuda': True,
            'multi_gpu': False,
            'bp_update_sync': True,
            'traj_len_inf': False,
            'model': {
                'observation_shape': [4, 96, 96],
                'frame_stack_num': 4,
                'action_space_size': 6,
                'downsample': True,
                'self_supervised_learning_loss': True,
                'discrete_action_encoding_type': 'one_hot',
                'norm_type': 'BN'
            },
            'use_rnd_model': False,
            'sampled_algo': False,
            'gumbel_algo': False,
            'mcts_ctree': True,
            'collector_env_num': 8,
            'evaluator_env_num': 3,
            'env_type': 'not_board_games',
            'action_type': 'fixed_action_space',
            'battle_mode': 'play_with_bot_mode',
            'monitor_extra_statistics': True,
            'game_segment_length': 400,
            'transform2string': False,
            'gray_scale': False,
            'use_augmentation': True,
            'augmentation': ['shift', 'intensity'],
            'ignore_done': False,
            'update_per_collect': 1000,
            'model_update_ratio': 0.1,
            'batch_size': 256,
            'optim_type': 'SGD',
            'learning_rate': 0.2,
            'target_update_freq': 100,
            'target_update_freq_for_intrinsic_reward': 1000,
            'weight_decay': 0.0001,
            'momentum': 0.9,
            'grad_clip_value': 10,
            'n_episode': 8,
            'num_simulations': 50,
            'discount_factor': 0.997,
            'td_steps': 5,
            'num_unroll_steps': 5,
            'reward_loss_weight': 1,
            'value_loss_weight': 0.25,
            'policy_loss_weight': 1,
            'policy_entropy_loss_weight': 0,
            'ssl_loss_weight': 2,
            'lr_piecewise_constant_decay': True,
            'threshold_training_steps_for_final_lr': 50000,
            'manual_temperature_decay': False,
            'threshold_training_steps_for_final_temperature': 100000,
            'fixed_temperature_value': 0.25,
            'use_ture_chance_label_in_chance_encoder': False,
            'use_priority': True,
            'priority_prob_alpha': 0.6,
            'priority_prob_beta': 0.4,
            'root_dirichlet_alpha': 0.3,
            'root_noise_weight': 0.25,
            'random_collect_episode_num': 0,
            'eps': {
                'eps_greedy_exploration_in_collect': False,
                'type': 'linear',
                'start': 1.0,
                'end': 0.05,
                'decay': 100000
            },
            'cfg_type': 'MuZeroPolicyDict',
            'reanalyze_ratio': 0.0,
            'eval_freq': 2000,
            'replay_buffer_size': 1000000
        },
        'wandb_logger': {
            'gradient_logger': False,
            'video_logger': False,
            'plot_logger': False,
            'action_logger': False,
            'return_logger': False
        }
    },
    'create_config': {
        'env': {
            'type': 'atari_lightzero',
            'import_names': ['zoo.atari.envs.atari_lightzero_env']
        },
        'env_manager': {
            'type': 'subprocess'
        },
        'policy': {
            'type': 'muzero',
            'import_names': ['lzero.policy.muzero']
        }
    }
}

```
</details>

**Training Procedure** 
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
- **Weights & Biases (wandb):** [monitor link](<TODO>)

## Model Information
<!-- Provide the basic links for the model. -->
- **Github Repository:** [repo link](https://github.com/opendilab/LightZero)
- **Doc**: [Algorithm link](<TODO>)
- **Configuration:** [config link](https://huggingface.co/OpenDILabCommunity/PongNoFrameskip-v4-MuZero/blob/main/policy_config.py)
- **Demo:** [video](https://huggingface.co/OpenDILabCommunity/PongNoFrameskip-v4-MuZero/blob/main/replay.mp4)
<!-- Provide the size information for the model. -->
- **Parameters total size:** 24013.13 KB
- **Last Update Date:** 2023-12-15

## Environments
<!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
- **Benchmark:** OpenAI/Gym/Atari
- **Task:** PongNoFrameskip-v4
- **Gym version:** 0.25.1
- **DI-engine version:** v0.5.0
- **PyTorch version:** 2.0.1+cu117
- **Doc**: [Environments link](<TODO>)