Weiyun1025 commited on
Commit
4dfa205
·
verified ·
1 Parent(s): f18739f

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 32019,
3
+ "</img>": 32012,
4
+ "</quad>": 32015,
5
+ "</ref>": 32017,
6
+ "<IMG_CONTEXT>": 32013,
7
+ "<box>": 32018,
8
+ "<img>": 32011,
9
+ "<quad>": 32014,
10
+ "<ref>": 32016,
11
+ "<|assistant|>": 32001,
12
+ "<|endoftext|>": 32000,
13
+ "<|end|>": 32007,
14
+ "<|placeholder1|>": 32002,
15
+ "<|placeholder2|>": 32003,
16
+ "<|placeholder3|>": 32004,
17
+ "<|placeholder4|>": 32005,
18
+ "<|placeholder5|>": 32008,
19
+ "<|placeholder6|>": 32009,
20
+ "<|system|>": 32006,
21
+ "<|user|>": 32010
22
+ }
config.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "InternVLChatModel"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
8
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
9
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
10
+ },
11
+ "downsample_ratio": 0.5,
12
+ "dynamic_image_size": true,
13
+ "force_image_size": 448,
14
+ "llm_config": {
15
+ "_name_or_path": "./pretrained/Phi-3-mini-128k-instruct",
16
+ "add_cross_attention": false,
17
+ "architectures": [
18
+ "Phi3ForCausalLM"
19
+ ],
20
+ "attention_dropout": 0.0,
21
+ "auto_map": {
22
+ "AutoConfig": "configuration_phi3.Phi3Config",
23
+ "AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
24
+ },
25
+ "bad_words_ids": null,
26
+ "begin_suppress_tokens": null,
27
+ "bos_token_id": 1,
28
+ "chunk_size_feed_forward": 0,
29
+ "cross_attention_hidden_size": null,
30
+ "decoder_start_token_id": null,
31
+ "diversity_penalty": 0.0,
32
+ "do_sample": false,
33
+ "early_stopping": false,
34
+ "embd_pdrop": 0.0,
35
+ "encoder_no_repeat_ngram_size": 0,
36
+ "eos_token_id": 32000,
37
+ "exponential_decay_length_penalty": null,
38
+ "finetuning_task": null,
39
+ "forced_bos_token_id": null,
40
+ "forced_eos_token_id": null,
41
+ "hidden_act": "silu",
42
+ "hidden_size": 3072,
43
+ "id2label": {
44
+ "0": "LABEL_0",
45
+ "1": "LABEL_1"
46
+ },
47
+ "initializer_range": 0.02,
48
+ "intermediate_size": 8192,
49
+ "is_decoder": false,
50
+ "is_encoder_decoder": false,
51
+ "label2id": {
52
+ "LABEL_0": 0,
53
+ "LABEL_1": 1
54
+ },
55
+ "length_penalty": 1.0,
56
+ "max_length": 20,
57
+ "max_position_embeddings": 131072,
58
+ "min_length": 0,
59
+ "model_type": "phi3",
60
+ "no_repeat_ngram_size": 0,
61
+ "num_attention_heads": 32,
62
+ "num_beam_groups": 1,
63
+ "num_beams": 1,
64
+ "num_hidden_layers": 32,
65
+ "num_key_value_heads": 32,
66
+ "num_return_sequences": 1,
67
+ "original_max_position_embeddings": 4096,
68
+ "output_attentions": false,
69
+ "output_hidden_states": false,
70
+ "output_scores": false,
71
+ "pad_token_id": 32000,
72
+ "prefix": null,
73
+ "problem_type": null,
74
+ "pruned_heads": {},
75
+ "remove_invalid_values": false,
76
+ "repetition_penalty": 1.0,
77
+ "resid_pdrop": 0.0,
78
+ "return_dict": true,
79
+ "return_dict_in_generate": false,
80
+ "rms_norm_eps": 1e-05,
81
+ "rope_scaling": {
82
+ "long_factor": [
83
+ 1.0299999713897705,
84
+ 1.0499999523162842,
85
+ 1.0499999523162842,
86
+ 1.0799999237060547,
87
+ 1.2299998998641968,
88
+ 1.2299998998641968,
89
+ 1.2999999523162842,
90
+ 1.4499999284744263,
91
+ 1.5999999046325684,
92
+ 1.6499998569488525,
93
+ 1.8999998569488525,
94
+ 2.859999895095825,
95
+ 3.68999981880188,
96
+ 5.419999599456787,
97
+ 5.489999771118164,
98
+ 5.489999771118164,
99
+ 9.09000015258789,
100
+ 11.579999923706055,
101
+ 15.65999984741211,
102
+ 15.769999504089355,
103
+ 15.789999961853027,
104
+ 18.360000610351562,
105
+ 21.989999771118164,
106
+ 23.079999923706055,
107
+ 30.009998321533203,
108
+ 32.35000228881836,
109
+ 32.590003967285156,
110
+ 35.56000518798828,
111
+ 39.95000457763672,
112
+ 53.840003967285156,
113
+ 56.20000457763672,
114
+ 57.95000457763672,
115
+ 59.29000473022461,
116
+ 59.77000427246094,
117
+ 59.920005798339844,
118
+ 61.190006256103516,
119
+ 61.96000671386719,
120
+ 62.50000762939453,
121
+ 63.3700065612793,
122
+ 63.48000717163086,
123
+ 63.48000717163086,
124
+ 63.66000747680664,
125
+ 63.850006103515625,
126
+ 64.08000946044922,
127
+ 64.760009765625,
128
+ 64.80001068115234,
129
+ 64.81001281738281,
130
+ 64.81001281738281
131
+ ],
132
+ "short_factor": [
133
+ 1.05,
134
+ 1.05,
135
+ 1.05,
136
+ 1.1,
137
+ 1.1,
138
+ 1.1500000000000001,
139
+ 1.2000000000000002,
140
+ 1.2500000000000002,
141
+ 1.3000000000000003,
142
+ 1.3500000000000003,
143
+ 1.5000000000000004,
144
+ 2.000000000000001,
145
+ 2.000000000000001,
146
+ 2.000000000000001,
147
+ 2.000000000000001,
148
+ 2.000000000000001,
149
+ 2.000000000000001,
150
+ 2.000000000000001,
151
+ 2.000000000000001,
152
+ 2.000000000000001,
153
+ 2.000000000000001,
154
+ 2.000000000000001,
155
+ 2.000000000000001,
156
+ 2.000000000000001,
157
+ 2.000000000000001,
158
+ 2.000000000000001,
159
+ 2.000000000000001,
160
+ 2.000000000000001,
161
+ 2.000000000000001,
162
+ 2.000000000000001,
163
+ 2.000000000000001,
164
+ 2.000000000000001,
165
+ 2.0500000000000007,
166
+ 2.0500000000000007,
167
+ 2.0500000000000007,
168
+ 2.1000000000000005,
169
+ 2.1000000000000005,
170
+ 2.1000000000000005,
171
+ 2.1500000000000004,
172
+ 2.1500000000000004,
173
+ 2.3499999999999996,
174
+ 2.549999999999999,
175
+ 2.5999999999999988,
176
+ 2.5999999999999988,
177
+ 2.7499999999999982,
178
+ 2.849999999999998,
179
+ 2.849999999999998,
180
+ 2.9499999999999975
181
+ ],
182
+ "type": "su"
183
+ },
184
+ "rope_theta": 10000.0,
185
+ "sep_token_id": null,
186
+ "sliding_window": 262144,
187
+ "suppress_tokens": null,
188
+ "task_specific_params": null,
189
+ "temperature": 1.0,
190
+ "tf_legacy_loss": false,
191
+ "tie_encoder_decoder": false,
192
+ "tie_word_embeddings": false,
193
+ "tokenizer_class": null,
194
+ "top_k": 50,
195
+ "top_p": 1.0,
196
+ "torch_dtype": "bfloat16",
197
+ "torchscript": false,
198
+ "transformers_version": "4.37.2",
199
+ "typical_p": 1.0,
200
+ "use_bfloat16": true,
201
+ "use_cache": true,
202
+ "vocab_size": 32020
203
+ },
204
+ "max_dynamic_patch": 12,
205
+ "min_dynamic_patch": 1,
206
+ "model_type": "internvl_chat",
207
+ "ps_version": "v2",
208
+ "select_layer": -1,
209
+ "template": "phi3-chat",
210
+ "torch_dtype": "bfloat16",
211
+ "use_backbone_lora": 0,
212
+ "use_llm_lora": 0,
213
+ "use_thumbnail": true,
214
+ "vision_config": {
215
+ "_name_or_path": "",
216
+ "add_cross_attention": false,
217
+ "architectures": [
218
+ "InternVisionModel"
219
+ ],
220
+ "attention_dropout": 0.0,
221
+ "bad_words_ids": null,
222
+ "begin_suppress_tokens": null,
223
+ "bos_token_id": null,
224
+ "chunk_size_feed_forward": 0,
225
+ "cross_attention_hidden_size": null,
226
+ "decoder_start_token_id": null,
227
+ "diversity_penalty": 0.0,
228
+ "do_sample": false,
229
+ "drop_path_rate": 0.1,
230
+ "dropout": 0.0,
231
+ "early_stopping": false,
232
+ "encoder_no_repeat_ngram_size": 0,
233
+ "eos_token_id": null,
234
+ "exponential_decay_length_penalty": null,
235
+ "finetuning_task": null,
236
+ "forced_bos_token_id": null,
237
+ "forced_eos_token_id": null,
238
+ "hidden_act": "gelu",
239
+ "hidden_size": 1024,
240
+ "id2label": {
241
+ "0": "LABEL_0",
242
+ "1": "LABEL_1"
243
+ },
244
+ "image_size": 448,
245
+ "initializer_factor": 1.0,
246
+ "initializer_range": 0.02,
247
+ "intermediate_size": 4096,
248
+ "is_decoder": false,
249
+ "is_encoder_decoder": false,
250
+ "label2id": {
251
+ "LABEL_0": 0,
252
+ "LABEL_1": 1
253
+ },
254
+ "layer_norm_eps": 1e-06,
255
+ "length_penalty": 1.0,
256
+ "max_length": 20,
257
+ "min_length": 0,
258
+ "model_type": "intern_vit_6b",
259
+ "no_repeat_ngram_size": 0,
260
+ "norm_type": "layer_norm",
261
+ "num_attention_heads": 16,
262
+ "num_beam_groups": 1,
263
+ "num_beams": 1,
264
+ "num_channels": 3,
265
+ "num_hidden_layers": 24,
266
+ "num_return_sequences": 1,
267
+ "output_attentions": false,
268
+ "output_hidden_states": false,
269
+ "output_scores": false,
270
+ "pad_token_id": null,
271
+ "patch_size": 14,
272
+ "prefix": null,
273
+ "problem_type": null,
274
+ "pruned_heads": {},
275
+ "qk_normalization": false,
276
+ "qkv_bias": true,
277
+ "remove_invalid_values": false,
278
+ "repetition_penalty": 1.0,
279
+ "return_dict": true,
280
+ "return_dict_in_generate": false,
281
+ "sep_token_id": null,
282
+ "suppress_tokens": null,
283
+ "task_specific_params": null,
284
+ "temperature": 1.0,
285
+ "tf_legacy_loss": false,
286
+ "tie_encoder_decoder": false,
287
+ "tie_word_embeddings": true,
288
+ "tokenizer_class": null,
289
+ "top_k": 50,
290
+ "top_p": 1.0,
291
+ "torch_dtype": "bfloat16",
292
+ "torchscript": false,
293
+ "transformers_version": "4.37.2",
294
+ "typical_p": 1.0,
295
+ "use_bfloat16": true,
296
+ "use_flash_attn": true
297
+ }
298
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class InternVisionConfig(PretrainedConfig):
16
+ r"""
17
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+ Args:
24
+ num_channels (`int`, *optional*, defaults to 3):
25
+ Number of color channels in the input images (e.g., 3 for RGB).
26
+ patch_size (`int`, *optional*, defaults to 14):
27
+ The size (resolution) of each patch.
28
+ image_size (`int`, *optional*, defaults to 224):
29
+ The size (resolution) of each image.
30
+ qkv_bias (`bool`, *optional*, defaults to `False`):
31
+ Whether to add a bias to the queries and values in the self-attention layers.
32
+ hidden_size (`int`, *optional*, defaults to 3200):
33
+ Dimensionality of the encoder layers and the pooler layer.
34
+ num_attention_heads (`int`, *optional*, defaults to 25):
35
+ Number of attention heads for each attention layer in the Transformer encoder.
36
+ intermediate_size (`int`, *optional*, defaults to 12800):
37
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
+ qk_normalization (`bool`, *optional*, defaults to `True`):
39
+ Whether to normalize the queries and keys in the self-attention layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 48):
41
+ Number of hidden layers in the Transformer encoder.
42
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
43
+ Whether to use flash attention mechanism.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
+ The epsilon used by the layer normalization layers.
49
+ dropout (`float`, *optional*, defaults to 0.0):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
52
+ Dropout rate for stochastic depth.
53
+ attention_dropout (`float`, *optional*, defaults to 0.0):
54
+ The dropout ratio for the attention probabilities.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ initializer_factor (`float`, *optional*, defaults to 0.1):
58
+ A factor for layer scale.
59
+ """
60
+
61
+ model_type = 'intern_vit_6b'
62
+
63
+ def __init__(
64
+ self,
65
+ num_channels=3,
66
+ patch_size=14,
67
+ image_size=224,
68
+ qkv_bias=False,
69
+ hidden_size=3200,
70
+ num_attention_heads=25,
71
+ intermediate_size=12800,
72
+ qk_normalization=True,
73
+ num_hidden_layers=48,
74
+ use_flash_attn=True,
75
+ hidden_act='gelu',
76
+ norm_type='rms_norm',
77
+ layer_norm_eps=1e-6,
78
+ dropout=0.0,
79
+ drop_path_rate=0.0,
80
+ attention_dropout=0.0,
81
+ initializer_range=0.02,
82
+ initializer_factor=0.1,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(**kwargs)
86
+
87
+ self.hidden_size = hidden_size
88
+ self.intermediate_size = intermediate_size
89
+ self.dropout = dropout
90
+ self.drop_path_rate = drop_path_rate
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_attention_heads = num_attention_heads
93
+ self.num_channels = num_channels
94
+ self.patch_size = patch_size
95
+ self.image_size = image_size
96
+ self.initializer_range = initializer_range
97
+ self.initializer_factor = initializer_factor
98
+ self.attention_dropout = attention_dropout
99
+ self.layer_norm_eps = layer_norm_eps
100
+ self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
+ self.qkv_bias = qkv_bias
103
+ self.qk_normalization = qk_normalization
104
+ self.use_flash_attn = use_flash_attn
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
108
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
109
+
110
+ if 'vision_config' in config_dict:
111
+ config_dict = config_dict['vision_config']
112
+
113
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
114
+ logger.warning(
115
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
116
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
117
+ )
118
+
119
+ return cls.from_dict(config_dict, **kwargs)
configuration_internvl_chat.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+ from .configuration_phi3 import Phi3Config
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ class InternVLChatConfig(PretrainedConfig):
20
+ model_type = 'internvl_chat'
21
+ is_composition = True
22
+
23
+ def __init__(
24
+ self,
25
+ vision_config=None,
26
+ llm_config=None,
27
+ use_backbone_lora=0,
28
+ use_llm_lora=0,
29
+ pad2square=False,
30
+ select_layer=-1,
31
+ force_image_size=None,
32
+ downsample_ratio=0.5,
33
+ template=None,
34
+ dynamic_image_size=False,
35
+ use_thumbnail=False,
36
+ ps_version='v1',
37
+ min_dynamic_patch=1,
38
+ max_dynamic_patch=6,
39
+ **kwargs):
40
+ super().__init__(**kwargs)
41
+
42
+ if vision_config is None:
43
+ vision_config = {}
44
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
45
+
46
+ if llm_config is None:
47
+ llm_config = {}
48
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
49
+
50
+ self.vision_config = InternVisionConfig(**vision_config)
51
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
52
+ self.llm_config = LlamaConfig(**llm_config)
53
+ elif llm_config['architectures'][0] == 'Phi3ForCausalLM':
54
+ self.llm_config = Phi3Config(**llm_config)
55
+ else:
56
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
57
+ self.use_backbone_lora = use_backbone_lora
58
+ self.use_llm_lora = use_llm_lora
59
+ self.pad2square = pad2square
60
+ self.select_layer = select_layer
61
+ self.force_image_size = force_image_size
62
+ self.downsample_ratio = downsample_ratio
63
+ self.template = template
64
+ self.dynamic_image_size = dynamic_image_size
65
+ self.use_thumbnail = use_thumbnail
66
+ self.ps_version = ps_version # pixel shuffle version
67
+ self.min_dynamic_patch = min_dynamic_patch
68
+ self.max_dynamic_patch = max_dynamic_patch
69
+
70
+ logger.info(f'vision_select_layer: {self.select_layer}')
71
+ logger.info(f'ps_version: {self.ps_version}')
72
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
73
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
74
+
75
+ def to_dict(self):
76
+ """
77
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
78
+
79
+ Returns:
80
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
81
+ """
82
+ output = copy.deepcopy(self.__dict__)
83
+ output['vision_config'] = self.vision_config.to_dict()
84
+ output['llm_config'] = self.llm_config.to_dict()
85
+ output['model_type'] = self.__class__.model_type
86
+ output['use_backbone_lora'] = self.use_backbone_lora
87
+ output['use_llm_lora'] = self.use_llm_lora
88
+ output['pad2square'] = self.pad2square
89
+ output['select_layer'] = self.select_layer
90
+ output['force_image_size'] = self.force_image_size
91
+ output['downsample_ratio'] = self.downsample_ratio
92
+ output['template'] = self.template
93
+ output['dynamic_image_size'] = self.dynamic_image_size
94
+ output['use_thumbnail'] = self.use_thumbnail
95
+ output['ps_version'] = self.ps_version
96
+ output['min_dynamic_patch'] = self.min_dynamic_patch
97
+ output['max_dynamic_patch'] = self.max_dynamic_patch
98
+
99
+ return output
configuration_phi3.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License atd
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """ Phi-3 model configuration"""
16
+
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ 'microsoft/Phi-3-mini-4k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json',
25
+ 'microsoft/Phi-3-mini-128k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json',
26
+ }
27
+
28
+
29
+ class Phi3Config(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
32
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
33
+ defaults will yield a similar configuration to that of the
34
+ [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 32064):
41
+ Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`Phi3Model`].
43
+ hidden_size (`int`, *optional*, defaults to 3072):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 8192):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer decoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (`int`, *optional*):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
60
+ Dropout probability for mlp outputs.
61
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
62
+ The dropout ratio for the embeddings.
63
+ attention_dropout (`float`, *optional*, defaults to 0.0):
64
+ The dropout ratio after computing the attention scores.
65
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
66
+ The non-linear activation function (function or string) in the decoder.
67
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
68
+ The maximum sequence length that this model might ever be used with.
69
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
70
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
71
+ original RoPE embeddings when using long scaling.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
75
+ The epsilon value used for the RMSNorm.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`dict`, *optional*):
84
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
85
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
86
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
87
+ divided by the number of attention heads divided by 2.
88
+ bos_token_id (`int`, *optional*, defaults to 1):
89
+ The id of the "beginning-of-sequence" token.
90
+ eos_token_id (`int`, *optional*, defaults to 32000):
91
+ The id of the "end-of-sequence" token.
92
+ pad_token_id (`int`, *optional*, defaults to 32000):
93
+ The id of the padding token.
94
+ sliding_window (`int`, *optional*):
95
+ Sliding window attention window size. If `None`, no sliding window is applied.
96
+
97
+ Example:
98
+
99
+ ```python
100
+ >>> from transformers import Phi3Model, Phi3Config
101
+
102
+ >>> # Initializing a Phi-3 style configuration
103
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
104
+
105
+ >>> # Initializing a model from the configuration
106
+ >>> model = Phi3Model(configuration)
107
+
108
+ >>> # Accessing the model configuration
109
+ >>> configuration = model.config
110
+ ```"""
111
+
112
+ model_type = 'phi3'
113
+ keys_to_ignore_at_inference = ['past_key_values']
114
+
115
+ def __init__(
116
+ self,
117
+ vocab_size=32064,
118
+ hidden_size=3072,
119
+ intermediate_size=8192,
120
+ num_hidden_layers=32,
121
+ num_attention_heads=32,
122
+ num_key_value_heads=None,
123
+ resid_pdrop=0.0,
124
+ embd_pdrop=0.0,
125
+ attention_dropout=0.0,
126
+ hidden_act='silu',
127
+ max_position_embeddings=4096,
128
+ original_max_position_embeddings=4096,
129
+ initializer_range=0.02,
130
+ rms_norm_eps=1e-5,
131
+ use_cache=True,
132
+ tie_word_embeddings=False,
133
+ rope_theta=10000.0,
134
+ rope_scaling=None,
135
+ bos_token_id=1,
136
+ eos_token_id=32000,
137
+ pad_token_id=32000,
138
+ sliding_window=None,
139
+ **kwargs,
140
+ ):
141
+ self.vocab_size = vocab_size
142
+ self.hidden_size = hidden_size
143
+ self.intermediate_size = intermediate_size
144
+ self.num_hidden_layers = num_hidden_layers
145
+ self.num_attention_heads = num_attention_heads
146
+
147
+ if num_key_value_heads is None:
148
+ num_key_value_heads = num_attention_heads
149
+
150
+ self.num_key_value_heads = num_key_value_heads
151
+ self.resid_pdrop = resid_pdrop
152
+ self.embd_pdrop = embd_pdrop
153
+ self.attention_dropout = attention_dropout
154
+ self.hidden_act = hidden_act
155
+ self.max_position_embeddings = max_position_embeddings
156
+ self.original_max_position_embeddings = original_max_position_embeddings
157
+ self.initializer_range = initializer_range
158
+ self.rms_norm_eps = rms_norm_eps
159
+ self.use_cache = use_cache
160
+ self.rope_theta = rope_theta
161
+ self.rope_scaling = rope_scaling
162
+ self._rope_scaling_validation()
163
+ self.sliding_window = sliding_window
164
+
165
+ super().__init__(
166
+ bos_token_id=bos_token_id,
167
+ eos_token_id=eos_token_id,
168
+ pad_token_id=pad_token_id,
169
+ tie_word_embeddings=tie_word_embeddings,
170
+ **kwargs,
171
+ )
172
+
173
+ def _rope_scaling_validation(self):
174
+ """
175
+ Validate the `rope_scaling` configuration.
176
+ """
177
+ if self.rope_scaling is None:
178
+ return
179
+
180
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
181
+ raise ValueError(
182
+ '`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, '
183
+ f'got {self.rope_scaling}'
184
+ )
185
+ rope_scaling_type = self.rope_scaling.get('type', None)
186
+ rope_scaling_short_factor = self.rope_scaling.get('short_factor', None)
187
+ rope_scaling_long_factor = self.rope_scaling.get('long_factor', None)
188
+ if rope_scaling_type is None or rope_scaling_type not in ['su', 'yarn']:
189
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
190
+ if not (
191
+ isinstance(rope_scaling_short_factor, list)
192
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
193
+ ):
194
+ raise ValueError(
195
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
196
+ )
197
+ if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
198
+ raise ValueError(
199
+ f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
200
+ )
201
+ if not (
202
+ isinstance(rope_scaling_long_factor, list)
203
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
204
+ ):
205
+ raise ValueError(
206
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
207
+ )
208
+ if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
209
+ raise ValueError(
210
+ f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
211
+ )
conversation.py ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have any changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+ """
7
+
8
+ import dataclasses
9
+ from enum import IntEnum, auto
10
+ from typing import Any, Dict, List, Tuple, Union
11
+
12
+
13
+ class SeparatorStyle(IntEnum):
14
+ """Separator styles."""
15
+
16
+ ADD_COLON_SINGLE = auto()
17
+ ADD_COLON_TWO = auto()
18
+ ADD_COLON_SPACE_SINGLE = auto()
19
+ NO_COLON_SINGLE = auto()
20
+ NO_COLON_TWO = auto()
21
+ ADD_NEW_LINE_SINGLE = auto()
22
+ LLAMA2 = auto()
23
+ CHATGLM = auto()
24
+ CHATML = auto()
25
+ CHATINTERN = auto()
26
+ DOLLY = auto()
27
+ RWKV = auto()
28
+ PHOENIX = auto()
29
+ ROBIN = auto()
30
+ FALCON_CHAT = auto()
31
+ CHATGLM3 = auto()
32
+ INTERNVL_ZH = auto()
33
+ MPT = auto()
34
+
35
+
36
+ @dataclasses.dataclass
37
+ class Conversation:
38
+ """A class that manages prompt templates and keeps all conversation history."""
39
+
40
+ # The name of this template
41
+ name: str
42
+ # The template of the system prompt
43
+ system_template: str = '{system_message}'
44
+ # The system message
45
+ system_message: str = ''
46
+ # The names of two roles
47
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
48
+ # All messages. Each item is (role, message).
49
+ messages: List[List[str]] = ()
50
+ # The number of few shot examples
51
+ offset: int = 0
52
+ # The separator style and configurations
53
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
54
+ sep: str = '\n'
55
+ sep2: str = None
56
+ # Stop criteria (the default one is EOS token)
57
+ stop_str: Union[str, List[str]] = None
58
+ # Stops generation if meeting any token in this list
59
+ stop_token_ids: List[int] = None
60
+
61
+ def get_prompt(self) -> str:
62
+ """Get the prompt for generation."""
63
+ system_prompt = self.system_template.format(system_message=self.system_message)
64
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
65
+ ret = system_prompt + self.sep
66
+ for role, message in self.messages:
67
+ if message:
68
+ ret += role + ': ' + message + self.sep
69
+ else:
70
+ ret += role + ':'
71
+ return ret
72
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
73
+ seps = [self.sep, self.sep2]
74
+ ret = system_prompt + seps[0]
75
+ for i, (role, message) in enumerate(self.messages):
76
+ if message:
77
+ ret += role + ': ' + message + seps[i % 2]
78
+ else:
79
+ ret += role + ':'
80
+ return ret
81
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
82
+ ret = system_prompt + self.sep
83
+ for role, message in self.messages:
84
+ if message:
85
+ ret += role + ': ' + message + self.sep
86
+ else:
87
+ ret += role + ': ' # must be end with a space
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
90
+ ret = '' if system_prompt == '' else system_prompt + self.sep
91
+ for role, message in self.messages:
92
+ if message:
93
+ ret += role + '\n' + message + self.sep
94
+ else:
95
+ ret += role + '\n'
96
+ return ret
97
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
98
+ ret = system_prompt
99
+ for role, message in self.messages:
100
+ if message:
101
+ ret += role + message + self.sep
102
+ else:
103
+ ret += role
104
+ return ret
105
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
106
+ seps = [self.sep, self.sep2]
107
+ ret = system_prompt
108
+ for i, (role, message) in enumerate(self.messages):
109
+ if message:
110
+ ret += role + message + seps[i % 2]
111
+ else:
112
+ ret += role
113
+ return ret
114
+ elif self.sep_style == SeparatorStyle.RWKV:
115
+ ret = system_prompt
116
+ for i, (role, message) in enumerate(self.messages):
117
+ if message:
118
+ ret += (
119
+ role
120
+ + ': '
121
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
122
+ )
123
+ ret += '\n\n'
124
+ else:
125
+ ret += role + ':'
126
+ return ret
127
+ elif self.sep_style == SeparatorStyle.LLAMA2:
128
+ seps = [self.sep, self.sep2]
129
+ if self.system_message:
130
+ ret = system_prompt
131
+ else:
132
+ ret = '[INST] '
133
+ for i, (role, message) in enumerate(self.messages):
134
+ tag = self.roles[i % 2]
135
+ if message:
136
+ if i == 0:
137
+ ret += message + ' '
138
+ else:
139
+ ret += tag + ' ' + message + seps[i % 2]
140
+ else:
141
+ ret += tag
142
+ return ret
143
+ elif self.sep_style == SeparatorStyle.CHATGLM:
144
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
145
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
146
+ round_add_n = 1 if self.name == 'chatglm2' else 0
147
+ if system_prompt:
148
+ ret = system_prompt + self.sep
149
+ else:
150
+ ret = ''
151
+
152
+ for i, (role, message) in enumerate(self.messages):
153
+ if i % 2 == 0:
154
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
155
+
156
+ if message:
157
+ ret += f'{role}:{message}{self.sep}'
158
+ else:
159
+ ret += f'{role}:'
160
+ return ret
161
+ elif self.sep_style == SeparatorStyle.CHATML:
162
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
163
+ for role, message in self.messages:
164
+ if message:
165
+ ret += role + '\n' + message + self.sep + '\n'
166
+ else:
167
+ ret += role + '\n'
168
+ return ret
169
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
170
+ ret = ''
171
+ if self.system_message:
172
+ ret += system_prompt
173
+ for role, message in self.messages:
174
+ if message:
175
+ ret += role + '\n' + ' ' + message
176
+ else:
177
+ ret += role
178
+ return ret
179
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
180
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
181
+ seps = [self.sep, self.sep2]
182
+ ret = system_prompt
183
+ for i, (role, message) in enumerate(self.messages):
184
+ # if i % 2 == 0:
185
+ # ret += "<s>"
186
+ if message:
187
+ ret += role + ':' + message + seps[i % 2] + '\n'
188
+ else:
189
+ ret += role + ':'
190
+ return ret
191
+ elif self.sep_style == SeparatorStyle.DOLLY:
192
+ seps = [self.sep, self.sep2]
193
+ ret = system_prompt
194
+ for i, (role, message) in enumerate(self.messages):
195
+ if message:
196
+ ret += role + ':\n' + message + seps[i % 2]
197
+ if i % 2 == 1:
198
+ ret += '\n\n'
199
+ else:
200
+ ret += role + ':\n'
201
+ return ret
202
+ elif self.sep_style == SeparatorStyle.PHOENIX:
203
+ ret = system_prompt
204
+ for role, message in self.messages:
205
+ if message:
206
+ ret += role + ': ' + '<s>' + message + '</s>'
207
+ else:
208
+ ret += role + ': ' + '<s>'
209
+ return ret
210
+ elif self.sep_style == SeparatorStyle.ROBIN:
211
+ ret = system_prompt + self.sep
212
+ for role, message in self.messages:
213
+ if message:
214
+ ret += role + ':\n' + message + self.sep
215
+ else:
216
+ ret += role + ':\n'
217
+ return ret
218
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
219
+ ret = ''
220
+ if self.system_message:
221
+ ret += system_prompt + self.sep
222
+ for role, message in self.messages:
223
+ if message:
224
+ ret += role + ': ' + message + self.sep
225
+ else:
226
+ ret += role + ':'
227
+
228
+ return ret
229
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
230
+ seps = [self.sep, self.sep2]
231
+ ret = self.system_message + seps[0]
232
+ for i, (role, message) in enumerate(self.messages):
233
+ if message:
234
+ ret += role + ': ' + message + seps[i % 2]
235
+ else:
236
+ ret += role + ':'
237
+ return ret
238
+ elif self.sep_style == SeparatorStyle.MPT:
239
+ ret = system_prompt + self.sep
240
+ for role, message in self.messages:
241
+ if message:
242
+ if type(message) is tuple:
243
+ message, _, _ = message
244
+ ret += role + message + self.sep
245
+ else:
246
+ ret += role
247
+ return ret
248
+ else:
249
+ raise ValueError(f'Invalid style: {self.sep_style}')
250
+
251
+ def set_system_message(self, system_message: str):
252
+ """Set the system message."""
253
+ self.system_message = system_message
254
+
255
+ def append_message(self, role: str, message: str):
256
+ """Append a new message."""
257
+ self.messages.append([role, message])
258
+
259
+ def update_last_message(self, message: str):
260
+ """Update the last output.
261
+
262
+ The last message is typically set to be None when constructing the prompt,
263
+ so we need to update it in-place after getting the response from a model.
264
+ """
265
+ self.messages[-1][1] = message
266
+
267
+ def to_gradio_chatbot(self):
268
+ """Convert the conversation to gradio chatbot format."""
269
+ ret = []
270
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
271
+ if i % 2 == 0:
272
+ ret.append([msg, None])
273
+ else:
274
+ ret[-1][-1] = msg
275
+ return ret
276
+
277
+ def to_openai_api_messages(self):
278
+ """Convert the conversation to OpenAI chat completion format."""
279
+ ret = [{'role': 'system', 'content': self.system_message}]
280
+
281
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
282
+ if i % 2 == 0:
283
+ ret.append({'role': 'user', 'content': msg})
284
+ else:
285
+ if msg is not None:
286
+ ret.append({'role': 'assistant', 'content': msg})
287
+ return ret
288
+
289
+ def copy(self):
290
+ return Conversation(
291
+ name=self.name,
292
+ system_template=self.system_template,
293
+ system_message=self.system_message,
294
+ roles=self.roles,
295
+ messages=[[x, y] for x, y in self.messages],
296
+ offset=self.offset,
297
+ sep_style=self.sep_style,
298
+ sep=self.sep,
299
+ sep2=self.sep2,
300
+ stop_str=self.stop_str,
301
+ stop_token_ids=self.stop_token_ids,
302
+ )
303
+
304
+ def dict(self):
305
+ return {
306
+ 'template_name': self.name,
307
+ 'system_message': self.system_message,
308
+ 'roles': self.roles,
309
+ 'messages': self.messages,
310
+ 'offset': self.offset,
311
+ }
312
+
313
+
314
+ # A global registry for all conversation templates
315
+ conv_templates: Dict[str, Conversation] = {}
316
+
317
+
318
+ def register_conv_template(template: Conversation, override: bool = False):
319
+ """Register a new conversation template."""
320
+ if not override:
321
+ assert (
322
+ template.name not in conv_templates
323
+ ), f'{template.name} has been registered.'
324
+
325
+ conv_templates[template.name] = template
326
+
327
+
328
+ def get_conv_template(name: str) -> Conversation:
329
+ """Get a conversation template."""
330
+ return conv_templates[name].copy()
331
+
332
+
333
+ register_conv_template(
334
+ Conversation(
335
+ name='Hermes-2',
336
+ system_template='<|im_start|>system\n{system_message}',
337
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
338
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
339
+ sep_style=SeparatorStyle.MPT,
340
+ sep='<|im_end|>',
341
+ stop_token_ids=[
342
+ 2,
343
+ 6,
344
+ 7,
345
+ 8,
346
+ ], # "<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|im_sep|>"
347
+ stop_str='<|endoftext|>',
348
+ )
349
+ )
350
+
351
+
352
+ register_conv_template(
353
+ Conversation(
354
+ name='internlm2-chat',
355
+ system_template='<|im_start|>system\n{system_message}',
356
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
357
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
358
+ sep_style=SeparatorStyle.MPT,
359
+ sep='<|im_end|>',
360
+ stop_token_ids=[
361
+ 2,
362
+ 92543,
363
+ 92542
364
+ ]
365
+ )
366
+ )
367
+
368
+
369
+ register_conv_template(
370
+ Conversation(
371
+ name='phi3-chat',
372
+ system_template='<|system|>\n{system_message}',
373
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
374
+ roles=('<|user|>\n', '<|assistant|>\n'),
375
+ sep_style=SeparatorStyle.MPT,
376
+ sep='<|end|>',
377
+ stop_token_ids=[
378
+ 2,
379
+ 32000,
380
+ 32007
381
+ ]
382
+ )
383
+ )
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.37.2"
4
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d49faea2fab060381af9c6902a1ae9593797cffdc6317394b62b6bc97a80f35
3
+ size 4957392176
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe85c0ab7ff42c3760870e1168f4de677f8177cbf4b43abde850e1d7ad16348a
3
+ size 3336385864
model.safetensors.index.json ADDED
@@ -0,0 +1,548 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8293711872
4
+ },
5
+ "weight_map": {
6
+ "language_model.lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "language_model.model.layers.0.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
13
+ "language_model.model.layers.0.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
14
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
15
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
16
+ "language_model.model.layers.1.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
17
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
19
+ "language_model.model.layers.1.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
20
+ "language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "language_model.model.layers.10.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
25
+ "language_model.model.layers.10.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
26
+ "language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "language_model.model.layers.11.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
29
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
31
+ "language_model.model.layers.11.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
32
+ "language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "language_model.model.layers.12.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
37
+ "language_model.model.layers.12.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
38
+ "language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
40
+ "language_model.model.layers.13.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
41
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
42
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
43
+ "language_model.model.layers.13.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
44
+ "language_model.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "language_model.model.layers.14.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
49
+ "language_model.model.layers.14.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
50
+ "language_model.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
51
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
52
+ "language_model.model.layers.15.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
53
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
55
+ "language_model.model.layers.15.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
56
+ "language_model.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "language_model.model.layers.16.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
61
+ "language_model.model.layers.16.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
62
+ "language_model.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "language_model.model.layers.17.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
65
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
66
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
67
+ "language_model.model.layers.17.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
68
+ "language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
69
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
70
+ "language_model.model.layers.18.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
71
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
72
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
73
+ "language_model.model.layers.18.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
74
+ "language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
75
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
76
+ "language_model.model.layers.19.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
77
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
78
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
79
+ "language_model.model.layers.19.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
80
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "language_model.model.layers.2.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
85
+ "language_model.model.layers.2.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
86
+ "language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
87
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
88
+ "language_model.model.layers.20.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
89
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
90
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
91
+ "language_model.model.layers.20.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
92
+ "language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
93
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
94
+ "language_model.model.layers.21.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
95
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
96
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
97
+ "language_model.model.layers.21.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
98
+ "language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
99
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
100
+ "language_model.model.layers.22.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
101
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
102
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
103
+ "language_model.model.layers.22.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
104
+ "language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
105
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
106
+ "language_model.model.layers.23.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
107
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
108
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
109
+ "language_model.model.layers.23.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
110
+ "language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
111
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
112
+ "language_model.model.layers.24.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
113
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
114
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
115
+ "language_model.model.layers.24.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
116
+ "language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
117
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
118
+ "language_model.model.layers.25.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
119
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
120
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
121
+ "language_model.model.layers.25.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
122
+ "language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
123
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
124
+ "language_model.model.layers.26.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
125
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
127
+ "language_model.model.layers.26.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
128
+ "language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
129
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
130
+ "language_model.model.layers.27.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
131
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
132
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
133
+ "language_model.model.layers.27.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
134
+ "language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "language_model.model.layers.28.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
137
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
138
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
139
+ "language_model.model.layers.28.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
140
+ "language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
141
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
142
+ "language_model.model.layers.29.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
143
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
145
+ "language_model.model.layers.29.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
146
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
147
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
148
+ "language_model.model.layers.3.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
149
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
150
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
151
+ "language_model.model.layers.3.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
152
+ "language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "language_model.model.layers.30.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
155
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
156
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
157
+ "language_model.model.layers.30.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
158
+ "language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
159
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
160
+ "language_model.model.layers.31.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
161
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
163
+ "language_model.model.layers.31.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
164
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "language_model.model.layers.4.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
169
+ "language_model.model.layers.4.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
170
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
171
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
172
+ "language_model.model.layers.5.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
173
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
174
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
175
+ "language_model.model.layers.5.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
176
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "language_model.model.layers.6.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
180
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
181
+ "language_model.model.layers.6.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
182
+ "language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
183
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
184
+ "language_model.model.layers.7.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
185
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
186
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
187
+ "language_model.model.layers.7.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
188
+ "language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "language_model.model.layers.8.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
191
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
192
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
193
+ "language_model.model.layers.8.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
194
+ "language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
195
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
196
+ "language_model.model.layers.9.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
197
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
199
+ "language_model.model.layers.9.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
200
+ "language_model.model.norm.weight": "model-00002-of-00002.safetensors",
201
+ "mlp1.0.bias": "model-00002-of-00002.safetensors",
202
+ "mlp1.0.weight": "model-00002-of-00002.safetensors",
203
+ "mlp1.1.bias": "model-00002-of-00002.safetensors",
204
+ "mlp1.1.weight": "model-00002-of-00002.safetensors",
205
+ "mlp1.3.bias": "model-00002-of-00002.safetensors",
206
+ "mlp1.3.weight": "model-00002-of-00002.safetensors",
207
+ "vision_model.embeddings.class_embedding": "model-00001-of-00002.safetensors",
208
+ "vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
209
+ "vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
210
+ "vision_model.embeddings.position_embedding": "model-00001-of-00002.safetensors",
211
+ "vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00002.safetensors",
212
+ "vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00002.safetensors",
213
+ "vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
214
+ "vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
215
+ "vision_model.encoder.layers.0.ls1": "model-00001-of-00002.safetensors",
216
+ "vision_model.encoder.layers.0.ls2": "model-00001-of-00002.safetensors",
217
+ "vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
218
+ "vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
219
+ "vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
220
+ "vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
221
+ "vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00002.safetensors",
222
+ "vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00002.safetensors",
223
+ "vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00002.safetensors",
224
+ "vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00002.safetensors",
225
+ "vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00002.safetensors",
226
+ "vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00002.safetensors",
227
+ "vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
228
+ "vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
229
+ "vision_model.encoder.layers.1.ls1": "model-00001-of-00002.safetensors",
230
+ "vision_model.encoder.layers.1.ls2": "model-00001-of-00002.safetensors",
231
+ "vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
232
+ "vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
233
+ "vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
234
+ "vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
235
+ "vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00002.safetensors",
236
+ "vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00002.safetensors",
237
+ "vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00002.safetensors",
238
+ "vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00002.safetensors",
239
+ "vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00002.safetensors",
240
+ "vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00002.safetensors",
241
+ "vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
242
+ "vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
243
+ "vision_model.encoder.layers.10.ls1": "model-00001-of-00002.safetensors",
244
+ "vision_model.encoder.layers.10.ls2": "model-00001-of-00002.safetensors",
245
+ "vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
246
+ "vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
247
+ "vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
248
+ "vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
249
+ "vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00002.safetensors",
250
+ "vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00002.safetensors",
251
+ "vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00002.safetensors",
252
+ "vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00002.safetensors",
253
+ "vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00002.safetensors",
254
+ "vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00002.safetensors",
255
+ "vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
256
+ "vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
257
+ "vision_model.encoder.layers.11.ls1": "model-00001-of-00002.safetensors",
258
+ "vision_model.encoder.layers.11.ls2": "model-00001-of-00002.safetensors",
259
+ "vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
260
+ "vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
261
+ "vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
262
+ "vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
263
+ "vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00002.safetensors",
264
+ "vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00002.safetensors",
265
+ "vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00002.safetensors",
266
+ "vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00002.safetensors",
267
+ "vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00002.safetensors",
268
+ "vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00002.safetensors",
269
+ "vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
270
+ "vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
271
+ "vision_model.encoder.layers.12.ls1": "model-00001-of-00002.safetensors",
272
+ "vision_model.encoder.layers.12.ls2": "model-00001-of-00002.safetensors",
273
+ "vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
274
+ "vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
275
+ "vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
276
+ "vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
277
+ "vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00002.safetensors",
278
+ "vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00002.safetensors",
279
+ "vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00002.safetensors",
280
+ "vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00002.safetensors",
281
+ "vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00002.safetensors",
282
+ "vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00002.safetensors",
283
+ "vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
284
+ "vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
285
+ "vision_model.encoder.layers.13.ls1": "model-00001-of-00002.safetensors",
286
+ "vision_model.encoder.layers.13.ls2": "model-00001-of-00002.safetensors",
287
+ "vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
288
+ "vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
289
+ "vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
290
+ "vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
291
+ "vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00002.safetensors",
292
+ "vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00002.safetensors",
293
+ "vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00002.safetensors",
294
+ "vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00002.safetensors",
295
+ "vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00002.safetensors",
296
+ "vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00002.safetensors",
297
+ "vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
298
+ "vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
299
+ "vision_model.encoder.layers.14.ls1": "model-00001-of-00002.safetensors",
300
+ "vision_model.encoder.layers.14.ls2": "model-00001-of-00002.safetensors",
301
+ "vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
302
+ "vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
303
+ "vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
304
+ "vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
305
+ "vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00002.safetensors",
306
+ "vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00002.safetensors",
307
+ "vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00002.safetensors",
308
+ "vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00002.safetensors",
309
+ "vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00002.safetensors",
310
+ "vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00002.safetensors",
311
+ "vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
312
+ "vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
313
+ "vision_model.encoder.layers.15.ls1": "model-00001-of-00002.safetensors",
314
+ "vision_model.encoder.layers.15.ls2": "model-00001-of-00002.safetensors",
315
+ "vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
316
+ "vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
317
+ "vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
318
+ "vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
319
+ "vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00002.safetensors",
320
+ "vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00002.safetensors",
321
+ "vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00002.safetensors",
322
+ "vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00002.safetensors",
323
+ "vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00002.safetensors",
324
+ "vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00002.safetensors",
325
+ "vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
326
+ "vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
327
+ "vision_model.encoder.layers.16.ls1": "model-00001-of-00002.safetensors",
328
+ "vision_model.encoder.layers.16.ls2": "model-00001-of-00002.safetensors",
329
+ "vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
330
+ "vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
331
+ "vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
332
+ "vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
333
+ "vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00002.safetensors",
334
+ "vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00002.safetensors",
335
+ "vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00002.safetensors",
336
+ "vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00002.safetensors",
337
+ "vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00002.safetensors",
338
+ "vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00002.safetensors",
339
+ "vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
340
+ "vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
341
+ "vision_model.encoder.layers.17.ls1": "model-00001-of-00002.safetensors",
342
+ "vision_model.encoder.layers.17.ls2": "model-00001-of-00002.safetensors",
343
+ "vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
344
+ "vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
345
+ "vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
346
+ "vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
347
+ "vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00002.safetensors",
348
+ "vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00002.safetensors",
349
+ "vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00002.safetensors",
350
+ "vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00002.safetensors",
351
+ "vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00002.safetensors",
352
+ "vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00002.safetensors",
353
+ "vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
354
+ "vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
355
+ "vision_model.encoder.layers.18.ls1": "model-00001-of-00002.safetensors",
356
+ "vision_model.encoder.layers.18.ls2": "model-00001-of-00002.safetensors",
357
+ "vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
358
+ "vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
359
+ "vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
360
+ "vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
361
+ "vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00002.safetensors",
362
+ "vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00002.safetensors",
363
+ "vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00002.safetensors",
364
+ "vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00002.safetensors",
365
+ "vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00002.safetensors",
366
+ "vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00002.safetensors",
367
+ "vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
368
+ "vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
369
+ "vision_model.encoder.layers.19.ls1": "model-00001-of-00002.safetensors",
370
+ "vision_model.encoder.layers.19.ls2": "model-00001-of-00002.safetensors",
371
+ "vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
372
+ "vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
373
+ "vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
374
+ "vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
375
+ "vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00002.safetensors",
376
+ "vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00002.safetensors",
377
+ "vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00002.safetensors",
378
+ "vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00002.safetensors",
379
+ "vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00002.safetensors",
380
+ "vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00002.safetensors",
381
+ "vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
382
+ "vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
383
+ "vision_model.encoder.layers.2.ls1": "model-00001-of-00002.safetensors",
384
+ "vision_model.encoder.layers.2.ls2": "model-00001-of-00002.safetensors",
385
+ "vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
386
+ "vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
387
+ "vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
388
+ "vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
389
+ "vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00002.safetensors",
390
+ "vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00002.safetensors",
391
+ "vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00002.safetensors",
392
+ "vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00002.safetensors",
393
+ "vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00002.safetensors",
394
+ "vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00002.safetensors",
395
+ "vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
396
+ "vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
397
+ "vision_model.encoder.layers.20.ls1": "model-00001-of-00002.safetensors",
398
+ "vision_model.encoder.layers.20.ls2": "model-00001-of-00002.safetensors",
399
+ "vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
400
+ "vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
401
+ "vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
402
+ "vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
403
+ "vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00002.safetensors",
404
+ "vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00002.safetensors",
405
+ "vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00002.safetensors",
406
+ "vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00002.safetensors",
407
+ "vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00002.safetensors",
408
+ "vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00002.safetensors",
409
+ "vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
410
+ "vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
411
+ "vision_model.encoder.layers.21.ls1": "model-00001-of-00002.safetensors",
412
+ "vision_model.encoder.layers.21.ls2": "model-00001-of-00002.safetensors",
413
+ "vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
414
+ "vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
415
+ "vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
416
+ "vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
417
+ "vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00002.safetensors",
418
+ "vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00002.safetensors",
419
+ "vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00002.safetensors",
420
+ "vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00002.safetensors",
421
+ "vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00002.safetensors",
422
+ "vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00002.safetensors",
423
+ "vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
424
+ "vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
425
+ "vision_model.encoder.layers.22.ls1": "model-00001-of-00002.safetensors",
426
+ "vision_model.encoder.layers.22.ls2": "model-00001-of-00002.safetensors",
427
+ "vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
428
+ "vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
429
+ "vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
430
+ "vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
431
+ "vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00002.safetensors",
432
+ "vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00002.safetensors",
433
+ "vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00002.safetensors",
434
+ "vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00002.safetensors",
435
+ "vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00002.safetensors",
436
+ "vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00002.safetensors",
437
+ "vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
438
+ "vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
439
+ "vision_model.encoder.layers.23.ls1": "model-00001-of-00002.safetensors",
440
+ "vision_model.encoder.layers.23.ls2": "model-00001-of-00002.safetensors",
441
+ "vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
442
+ "vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
443
+ "vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
444
+ "vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
445
+ "vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00002.safetensors",
446
+ "vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00002.safetensors",
447
+ "vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00002.safetensors",
448
+ "vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00002.safetensors",
449
+ "vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00002.safetensors",
450
+ "vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00002.safetensors",
451
+ "vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
452
+ "vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
453
+ "vision_model.encoder.layers.3.ls1": "model-00001-of-00002.safetensors",
454
+ "vision_model.encoder.layers.3.ls2": "model-00001-of-00002.safetensors",
455
+ "vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
456
+ "vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
457
+ "vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
458
+ "vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
459
+ "vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00002.safetensors",
460
+ "vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00002.safetensors",
461
+ "vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00002.safetensors",
462
+ "vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00002.safetensors",
463
+ "vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00002.safetensors",
464
+ "vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00002.safetensors",
465
+ "vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
466
+ "vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
467
+ "vision_model.encoder.layers.4.ls1": "model-00001-of-00002.safetensors",
468
+ "vision_model.encoder.layers.4.ls2": "model-00001-of-00002.safetensors",
469
+ "vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
470
+ "vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
471
+ "vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
472
+ "vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
473
+ "vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00002.safetensors",
474
+ "vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00002.safetensors",
475
+ "vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00002.safetensors",
476
+ "vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00002.safetensors",
477
+ "vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00002.safetensors",
478
+ "vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00002.safetensors",
479
+ "vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
480
+ "vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
481
+ "vision_model.encoder.layers.5.ls1": "model-00001-of-00002.safetensors",
482
+ "vision_model.encoder.layers.5.ls2": "model-00001-of-00002.safetensors",
483
+ "vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
484
+ "vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
485
+ "vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
486
+ "vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
487
+ "vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00002.safetensors",
488
+ "vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00002.safetensors",
489
+ "vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00002.safetensors",
490
+ "vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00002.safetensors",
491
+ "vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00002.safetensors",
492
+ "vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00002.safetensors",
493
+ "vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
494
+ "vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
495
+ "vision_model.encoder.layers.6.ls1": "model-00001-of-00002.safetensors",
496
+ "vision_model.encoder.layers.6.ls2": "model-00001-of-00002.safetensors",
497
+ "vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
498
+ "vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
499
+ "vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
500
+ "vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
501
+ "vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00002.safetensors",
502
+ "vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00002.safetensors",
503
+ "vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00002.safetensors",
504
+ "vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00002.safetensors",
505
+ "vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00002.safetensors",
506
+ "vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00002.safetensors",
507
+ "vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
508
+ "vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
509
+ "vision_model.encoder.layers.7.ls1": "model-00001-of-00002.safetensors",
510
+ "vision_model.encoder.layers.7.ls2": "model-00001-of-00002.safetensors",
511
+ "vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
512
+ "vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
513
+ "vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
514
+ "vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
515
+ "vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00002.safetensors",
516
+ "vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00002.safetensors",
517
+ "vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00002.safetensors",
518
+ "vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00002.safetensors",
519
+ "vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00002.safetensors",
520
+ "vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00002.safetensors",
521
+ "vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
522
+ "vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
523
+ "vision_model.encoder.layers.8.ls1": "model-00001-of-00002.safetensors",
524
+ "vision_model.encoder.layers.8.ls2": "model-00001-of-00002.safetensors",
525
+ "vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
526
+ "vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
527
+ "vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
528
+ "vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
529
+ "vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00002.safetensors",
530
+ "vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00002.safetensors",
531
+ "vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00002.safetensors",
532
+ "vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00002.safetensors",
533
+ "vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00002.safetensors",
534
+ "vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00002.safetensors",
535
+ "vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
536
+ "vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
537
+ "vision_model.encoder.layers.9.ls1": "model-00001-of-00002.safetensors",
538
+ "vision_model.encoder.layers.9.ls2": "model-00001-of-00002.safetensors",
539
+ "vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
540
+ "vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
541
+ "vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
542
+ "vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
543
+ "vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00002.safetensors",
544
+ "vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00002.safetensors",
545
+ "vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00002.safetensors",
546
+ "vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00002.safetensors"
547
+ }
548
+ }
modeling_intern_vit.py ADDED
@@ -0,0 +1,434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ from typing import Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from einops import rearrange
12
+ from timm.models.layers import DropPath
13
+ from torch import nn
14
+ from transformers.activations import ACT2FN
15
+ from transformers.modeling_outputs import (BaseModelOutput,
16
+ BaseModelOutputWithPooling)
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import logging
19
+
20
+ from .configuration_intern_vit import InternVisionConfig
21
+
22
+ try:
23
+ try: # v1
24
+ from flash_attn.flash_attn_interface import \
25
+ flash_attn_unpadded_qkvpacked_func
26
+ except: # v2
27
+ from flash_attn.flash_attn_interface import \
28
+ flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
29
+
30
+ from flash_attn.bert_padding import pad_input, unpad_input
31
+
32
+ has_flash_attn = True
33
+ except:
34
+ print('FlashAttention is not installed.')
35
+ has_flash_attn = False
36
+
37
+ logger = logging.get_logger(__name__)
38
+
39
+
40
+ class FlashAttention(nn.Module):
41
+ """Implement the scaled dot product attention with softmax.
42
+ Arguments
43
+ ---------
44
+ softmax_scale: The temperature to use for the softmax attention.
45
+ (default: 1/sqrt(d_keys) where d_keys is computed at
46
+ runtime)
47
+ attention_dropout: The dropout rate to apply to the attention
48
+ (default: 0.0)
49
+ """
50
+
51
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
52
+ super().__init__()
53
+ self.softmax_scale = softmax_scale
54
+ self.dropout_p = attention_dropout
55
+
56
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
57
+ max_s=None, need_weights=False):
58
+ """Implements the multihead softmax attention.
59
+ Arguments
60
+ ---------
61
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
62
+ if unpadded: (nnz, 3, h, d)
63
+ key_padding_mask: a bool tensor of shape (B, S)
64
+ """
65
+ assert not need_weights
66
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
67
+ assert qkv.is_cuda
68
+
69
+ if cu_seqlens is None:
70
+ batch_size = qkv.shape[0]
71
+ seqlen = qkv.shape[1]
72
+ if key_padding_mask is None:
73
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
74
+ max_s = seqlen
75
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
76
+ device=qkv.device)
77
+ output = flash_attn_unpadded_qkvpacked_func(
78
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
79
+ softmax_scale=self.softmax_scale, causal=causal
80
+ )
81
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
82
+ else:
83
+ nheads = qkv.shape[-2]
84
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
85
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
86
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
87
+ output_unpad = flash_attn_unpadded_qkvpacked_func(
88
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
89
+ softmax_scale=self.softmax_scale, causal=causal
90
+ )
91
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
92
+ indices, batch_size, seqlen),
93
+ 'b s (h d) -> b s h d', h=nheads)
94
+ else:
95
+ assert max_s is not None
96
+ output = flash_attn_unpadded_qkvpacked_func(
97
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
98
+ softmax_scale=self.softmax_scale, causal=causal
99
+ )
100
+
101
+ return output, None
102
+
103
+
104
+ class InternRMSNorm(nn.Module):
105
+ def __init__(self, hidden_size, eps=1e-6):
106
+ super().__init__()
107
+ self.weight = nn.Parameter(torch.ones(hidden_size))
108
+ self.variance_epsilon = eps
109
+
110
+ def forward(self, hidden_states):
111
+ input_dtype = hidden_states.dtype
112
+ hidden_states = hidden_states.to(torch.float32)
113
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
114
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
115
+ return self.weight * hidden_states.to(input_dtype)
116
+
117
+
118
+ try:
119
+ from apex.normalization import FusedRMSNorm
120
+
121
+ InternRMSNorm = FusedRMSNorm # noqa
122
+
123
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
124
+ except ImportError:
125
+ # using the normal InternRMSNorm
126
+ pass
127
+ except Exception:
128
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
129
+ pass
130
+
131
+
132
+ NORM2FN = {
133
+ 'rms_norm': InternRMSNorm,
134
+ 'layer_norm': nn.LayerNorm,
135
+ }
136
+
137
+
138
+ class InternVisionEmbeddings(nn.Module):
139
+ def __init__(self, config: InternVisionConfig):
140
+ super().__init__()
141
+ self.config = config
142
+ self.embed_dim = config.hidden_size
143
+ self.image_size = config.image_size
144
+ self.patch_size = config.patch_size
145
+
146
+ self.class_embedding = nn.Parameter(
147
+ torch.randn(1, 1, self.embed_dim),
148
+ )
149
+
150
+ self.patch_embedding = nn.Conv2d(
151
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
152
+ )
153
+
154
+ self.num_patches = (self.image_size // self.patch_size) ** 2
155
+ self.num_positions = self.num_patches + 1
156
+
157
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
158
+
159
+ def _get_pos_embed(self, pos_embed, H, W):
160
+ target_dtype = pos_embed.dtype
161
+ pos_embed = pos_embed.float().reshape(
162
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
163
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
164
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
165
+ return pos_embed
166
+
167
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
168
+ target_dtype = self.patch_embedding.weight.dtype
169
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
170
+ batch_size, _, height, width = patch_embeds.shape
171
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
172
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
173
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
174
+ position_embedding = torch.cat([
175
+ self.position_embedding[:, :1, :],
176
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
177
+ ], dim=1)
178
+ embeddings = embeddings + position_embedding.to(target_dtype)
179
+ return embeddings
180
+
181
+
182
+ class InternAttention(nn.Module):
183
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
184
+
185
+ def __init__(self, config: InternVisionConfig):
186
+ super().__init__()
187
+ self.config = config
188
+ self.embed_dim = config.hidden_size
189
+ self.num_heads = config.num_attention_heads
190
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
191
+ if config.use_flash_attn and not has_flash_attn:
192
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
193
+ self.head_dim = self.embed_dim // self.num_heads
194
+ if self.head_dim * self.num_heads != self.embed_dim:
195
+ raise ValueError(
196
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
197
+ f' {self.num_heads}).'
198
+ )
199
+
200
+ self.scale = self.head_dim ** -0.5
201
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
202
+ self.attn_drop = nn.Dropout(config.attention_dropout)
203
+ self.proj_drop = nn.Dropout(config.dropout)
204
+
205
+ self.qk_normalization = config.qk_normalization
206
+
207
+ if self.qk_normalization:
208
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
209
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
210
+
211
+ if self.use_flash_attn:
212
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
213
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
214
+
215
+ def _naive_attn(self, x):
216
+ B, N, C = x.shape
217
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
218
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
219
+
220
+ if self.qk_normalization:
221
+ B_, H_, N_, D_ = q.shape
222
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
223
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
224
+
225
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
226
+ attn = attn.softmax(dim=-1)
227
+ attn = self.attn_drop(attn)
228
+
229
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
230
+ x = self.proj(x)
231
+ x = self.proj_drop(x)
232
+ return x
233
+
234
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
235
+ qkv = self.qkv(x)
236
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
237
+
238
+ if self.qk_normalization:
239
+ q, k, v = qkv.unbind(2)
240
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
241
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
242
+ qkv = torch.stack([q, k, v], dim=2)
243
+
244
+ context, _ = self.inner_attn(
245
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
246
+ )
247
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
248
+ outs = self.proj_drop(outs)
249
+ return outs
250
+
251
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
252
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
253
+ return x
254
+
255
+
256
+ class InternMLP(nn.Module):
257
+ def __init__(self, config: InternVisionConfig):
258
+ super().__init__()
259
+ self.config = config
260
+ self.act = ACT2FN[config.hidden_act]
261
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
262
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
263
+
264
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
265
+ hidden_states = self.fc1(hidden_states)
266
+ hidden_states = self.act(hidden_states)
267
+ hidden_states = self.fc2(hidden_states)
268
+ return hidden_states
269
+
270
+
271
+ class InternVisionEncoderLayer(nn.Module):
272
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
273
+ super().__init__()
274
+ self.embed_dim = config.hidden_size
275
+ self.intermediate_size = config.intermediate_size
276
+ self.norm_type = config.norm_type
277
+
278
+ self.attn = InternAttention(config)
279
+ self.mlp = InternMLP(config)
280
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
281
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
282
+
283
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
284
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
285
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
286
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
287
+
288
+ def forward(
289
+ self,
290
+ hidden_states: torch.Tensor,
291
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
292
+ """
293
+ Args:
294
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
295
+ """
296
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
297
+
298
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
299
+
300
+ return hidden_states
301
+
302
+
303
+ class InternVisionEncoder(nn.Module):
304
+ """
305
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
306
+ [`InternEncoderLayer`].
307
+
308
+ Args:
309
+ config (`InternConfig`):
310
+ The corresponding vision configuration for the `InternEncoder`.
311
+ """
312
+
313
+ def __init__(self, config: InternVisionConfig):
314
+ super().__init__()
315
+ self.config = config
316
+ # stochastic depth decay rule
317
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
318
+ self.layers = nn.ModuleList([
319
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
320
+ self.gradient_checkpointing = True
321
+
322
+ def forward(
323
+ self,
324
+ inputs_embeds,
325
+ output_hidden_states: Optional[bool] = None,
326
+ return_dict: Optional[bool] = None,
327
+ ) -> Union[Tuple, BaseModelOutput]:
328
+ r"""
329
+ Args:
330
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
331
+ Embedded representation of the inputs. Should be float, not int tokens.
332
+ output_hidden_states (`bool`, *optional*):
333
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
334
+ for more detail.
335
+ return_dict (`bool`, *optional*):
336
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
337
+ """
338
+ output_hidden_states = (
339
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
340
+ )
341
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
342
+
343
+ encoder_states = () if output_hidden_states else None
344
+ hidden_states = inputs_embeds
345
+
346
+ for idx, encoder_layer in enumerate(self.layers):
347
+ if output_hidden_states:
348
+ encoder_states = encoder_states + (hidden_states,)
349
+ if self.gradient_checkpointing and self.training:
350
+ layer_outputs = torch.utils.checkpoint.checkpoint(
351
+ encoder_layer,
352
+ hidden_states)
353
+ else:
354
+ layer_outputs = encoder_layer(
355
+ hidden_states,
356
+ )
357
+ hidden_states = layer_outputs
358
+
359
+ if output_hidden_states:
360
+ encoder_states = encoder_states + (hidden_states,)
361
+
362
+ if not return_dict:
363
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
364
+ return BaseModelOutput(
365
+ last_hidden_state=hidden_states, hidden_states=encoder_states
366
+ )
367
+
368
+
369
+ class InternVisionModel(PreTrainedModel):
370
+ main_input_name = 'pixel_values'
371
+ config_class = InternVisionConfig
372
+ _no_split_modules = ['InternVisionEncoderLayer']
373
+
374
+ def __init__(self, config: InternVisionConfig):
375
+ super().__init__(config)
376
+ self.config = config
377
+
378
+ self.embeddings = InternVisionEmbeddings(config)
379
+ self.encoder = InternVisionEncoder(config)
380
+
381
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
382
+ pos_emb = self.embeddings.position_embedding
383
+ _, num_positions, embed_dim = pos_emb.shape
384
+ cls_emb = pos_emb[:, :1, :]
385
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
386
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
387
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
388
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
389
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
390
+ self.embeddings.image_size = new_size
391
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
392
+
393
+ def get_input_embeddings(self):
394
+ return self.embeddings
395
+
396
+ def forward(
397
+ self,
398
+ pixel_values: Optional[torch.FloatTensor] = None,
399
+ output_hidden_states: Optional[bool] = None,
400
+ return_dict: Optional[bool] = None,
401
+ pixel_embeds: Optional[torch.FloatTensor] = None,
402
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
403
+ output_hidden_states = (
404
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
405
+ )
406
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
407
+
408
+ if pixel_values is None and pixel_embeds is None:
409
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
410
+
411
+ if pixel_embeds is not None:
412
+ hidden_states = pixel_embeds
413
+ else:
414
+ if len(pixel_values.shape) == 4:
415
+ hidden_states = self.embeddings(pixel_values)
416
+ else:
417
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
418
+ encoder_outputs = self.encoder(
419
+ inputs_embeds=hidden_states,
420
+ output_hidden_states=output_hidden_states,
421
+ return_dict=return_dict,
422
+ )
423
+ last_hidden_state = encoder_outputs.last_hidden_state
424
+ pooled_output = last_hidden_state[:, 0, :]
425
+
426
+ if not return_dict:
427
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
428
+
429
+ return BaseModelOutputWithPooling(
430
+ last_hidden_state=last_hidden_state,
431
+ pooler_output=pooled_output,
432
+ hidden_states=encoder_outputs.hidden_states,
433
+ attentions=encoder_outputs.attentions,
434
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import warnings
7
+ from typing import Any, List, Optional, Tuple, Union
8
+
9
+ import torch.utils.checkpoint
10
+ from torch import nn
11
+ from torch.nn import CrossEntropyLoss
12
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
13
+ LlamaTokenizer)
14
+ from transformers.modeling_outputs import CausalLMOutputWithPast
15
+ from transformers.modeling_utils import PreTrainedModel
16
+ from transformers.utils import ModelOutput, logging
17
+
18
+ from .configuration_internvl_chat import InternVLChatConfig
19
+ from .conversation import get_conv_template
20
+ from .modeling_intern_vit import InternVisionModel
21
+ from .modeling_phi3 import Phi3ForCausalLM
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ class InternVLChatModel(PreTrainedModel):
27
+ config_class = InternVLChatConfig
28
+ main_input_name = 'pixel_values'
29
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Phi3DecoderLayer']
30
+
31
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
32
+ super().__init__(config)
33
+
34
+ image_size = config.force_image_size or config.vision_config.image_size
35
+ patch_size = config.vision_config.patch_size
36
+ self.patch_size = patch_size
37
+ self.select_layer = config.select_layer
38
+ self.template = config.template
39
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
40
+ self.downsample_ratio = config.downsample_ratio
41
+ self.ps_version = config.ps_version
42
+
43
+ logger.info(f'num_image_token: {self.num_image_token}')
44
+ logger.info(f'ps_version: {self.ps_version}')
45
+ if vision_model is not None:
46
+ self.vision_model = vision_model
47
+ else:
48
+ self.vision_model = InternVisionModel(config.vision_config)
49
+ if language_model is not None:
50
+ self.language_model = language_model
51
+ else:
52
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
53
+ self.language_model = LlamaForCausalLM(config.llm_config)
54
+ elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
55
+ self.language_model = Phi3ForCausalLM(config.llm_config)
56
+ else:
57
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
58
+
59
+ vit_hidden_size = config.vision_config.hidden_size
60
+ llm_hidden_size = config.llm_config.hidden_size
61
+
62
+ self.mlp1 = nn.Sequential(
63
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
64
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
65
+ nn.GELU(),
66
+ nn.Linear(llm_hidden_size, llm_hidden_size)
67
+ )
68
+
69
+ self.img_context_token_id = None
70
+
71
+ def forward(
72
+ self,
73
+ pixel_values: torch.FloatTensor,
74
+ input_ids: torch.LongTensor = None,
75
+ attention_mask: Optional[torch.Tensor] = None,
76
+ position_ids: Optional[torch.LongTensor] = None,
77
+ image_flags: Optional[torch.LongTensor] = None,
78
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
79
+ labels: Optional[torch.LongTensor] = None,
80
+ use_cache: Optional[bool] = None,
81
+ output_attentions: Optional[bool] = None,
82
+ output_hidden_states: Optional[bool] = None,
83
+ return_dict: Optional[bool] = None,
84
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
85
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
86
+
87
+ image_flags = image_flags.squeeze(-1)
88
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
89
+
90
+ vit_embeds = self.extract_feature(pixel_values)
91
+ vit_embeds = vit_embeds[image_flags == 1]
92
+ vit_batch_size = pixel_values.shape[0]
93
+
94
+ B, N, C = input_embeds.shape
95
+ input_embeds = input_embeds.reshape(B * N, C)
96
+
97
+ if torch.distributed.get_rank() == 0:
98
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
99
+
100
+ input_ids = input_ids.reshape(B * N)
101
+ selected = (input_ids == self.img_context_token_id)
102
+ try:
103
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
104
+ except Exception as e:
105
+ vit_embeds = vit_embeds.reshape(-1, C)
106
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
107
+ f'vit_embeds.shape={vit_embeds.shape}')
108
+ n_token = selected.sum()
109
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
110
+
111
+ input_embeds = input_embeds.reshape(B, N, C)
112
+
113
+ outputs = self.language_model(
114
+ inputs_embeds=input_embeds,
115
+ attention_mask=attention_mask,
116
+ position_ids=position_ids,
117
+ past_key_values=past_key_values,
118
+ use_cache=use_cache,
119
+ output_attentions=output_attentions,
120
+ output_hidden_states=output_hidden_states,
121
+ return_dict=return_dict,
122
+ )
123
+ logits = outputs.logits
124
+
125
+ loss = None
126
+ if labels is not None:
127
+ # Shift so that tokens < n predict n
128
+ shift_logits = logits[..., :-1, :].contiguous()
129
+ shift_labels = labels[..., 1:].contiguous()
130
+ # Flatten the tokens
131
+ loss_fct = CrossEntropyLoss()
132
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
133
+ shift_labels = shift_labels.view(-1)
134
+ # Enable model parallelism
135
+ shift_labels = shift_labels.to(shift_logits.device)
136
+ loss = loss_fct(shift_logits, shift_labels)
137
+
138
+ if not return_dict:
139
+ output = (logits,) + outputs[1:]
140
+ return (loss,) + output if loss is not None else output
141
+
142
+ return CausalLMOutputWithPast(
143
+ loss=loss,
144
+ logits=logits,
145
+ past_key_values=outputs.past_key_values,
146
+ hidden_states=outputs.hidden_states,
147
+ attentions=outputs.attentions,
148
+ )
149
+
150
+ def pixel_shuffle(self, x, scale_factor=0.5):
151
+ n, w, h, c = x.size()
152
+ # N, W, H, C --> N, W, H * scale, C // scale
153
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
154
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
155
+ x = x.permute(0, 2, 1, 3).contiguous()
156
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
157
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
158
+ int(c / (scale_factor * scale_factor)))
159
+ if self.ps_version == 'v1':
160
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
161
+ 'which results in a transposed image.')
162
+ else:
163
+ x = x.permute(0, 2, 1, 3).contiguous()
164
+ return x
165
+
166
+ def extract_feature(self, pixel_values):
167
+ if self.select_layer == -1:
168
+ vit_embeds = self.vision_model(
169
+ pixel_values=pixel_values,
170
+ output_hidden_states=False,
171
+ return_dict=True).last_hidden_state
172
+ else:
173
+ vit_embeds = self.vision_model(
174
+ pixel_values=pixel_values,
175
+ output_hidden_states=True,
176
+ return_dict=True).hidden_states[self.select_layer]
177
+ vit_embeds = vit_embeds[:, 1:, :]
178
+
179
+ h = w = int(vit_embeds.shape[1] ** 0.5)
180
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
181
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
182
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
183
+ vit_embeds = self.mlp1(vit_embeds)
184
+ return vit_embeds
185
+
186
+ def batch_chat(self, tokenizer, pixel_values, num_patches_list, questions, generation_config, history=None,
187
+ return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
188
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False):
189
+ if history is not None or return_history:
190
+ print('Now multi-turn chat is not supported in batch_chat.')
191
+ raise NotImplementedError
192
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
193
+ self.img_context_token_id = img_context_token_id
194
+
195
+ from .conversation import get_conv_template
196
+
197
+ queries = []
198
+ if verbose:
199
+ image_bs = pixel_values.shape[0]
200
+ print(f'dynamic ViT batch size: {image_bs}, num_patches_list: {num_patches_list}')
201
+ for idx, num_patches in enumerate(num_patches_list):
202
+ image_token = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
203
+ question = image_token + '\n' + questions[idx]
204
+ template = get_conv_template(self.template)
205
+ template.append_message(template.roles[0], question)
206
+ template.append_message(template.roles[1], None)
207
+ query = template.get_prompt()
208
+ queries.append(query)
209
+ tokenizer.padding_side = 'left'
210
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
211
+ input_ids = model_inputs['input_ids'].cuda()
212
+ attention_mask = model_inputs['attention_mask'].cuda()
213
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
214
+ generation_config['eos_token_id'] = eos_token_id
215
+
216
+ generation_output = self.generate(
217
+ pixel_values=pixel_values,
218
+ input_ids=input_ids,
219
+ attention_mask=attention_mask,
220
+ **generation_config
221
+ )
222
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
223
+ responses = [response.split(template.sep)[0].strip() for response in responses]
224
+ return responses
225
+
226
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
227
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
228
+ verbose=False):
229
+
230
+ if history is None and pixel_values is not None and '<image>' not in question:
231
+ question = '<image>\n' + question
232
+
233
+ if num_patches_list is None:
234
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
235
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
236
+
237
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
238
+ self.img_context_token_id = img_context_token_id
239
+
240
+ template = get_conv_template(self.template)
241
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
242
+
243
+ history = [] if history is None else history
244
+ for (old_question, old_answer) in history:
245
+ template.append_message(template.roles[0], old_question)
246
+ template.append_message(template.roles[1], old_answer)
247
+ template.append_message(template.roles[0], question)
248
+ template.append_message(template.roles[1], None)
249
+ query = template.get_prompt()
250
+
251
+ if verbose and pixel_values is not None:
252
+ image_bs = pixel_values.shape[0]
253
+ print(f'dynamic ViT batch size: {image_bs}')
254
+
255
+ for num_patches in num_patches_list:
256
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
257
+ query = query.replace('<image>', image_tokens, 1)
258
+
259
+ model_inputs = tokenizer(query, return_tensors='pt')
260
+ input_ids = model_inputs['input_ids'].cuda()
261
+ attention_mask = model_inputs['attention_mask'].cuda()
262
+ generation_config['eos_token_id'] = eos_token_id
263
+ generation_output = self.generate(
264
+ pixel_values=pixel_values,
265
+ input_ids=input_ids,
266
+ attention_mask=attention_mask,
267
+ **generation_config
268
+ )
269
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
270
+ response = response.split(template.sep)[0].strip()
271
+ history.append((question, response))
272
+ if return_history:
273
+ return response, history
274
+ else:
275
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
276
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
277
+ if verbose:
278
+ print(query_to_print, response)
279
+ return response
280
+
281
+ @torch.no_grad()
282
+ def generate(
283
+ self,
284
+ pixel_values: Optional[torch.FloatTensor] = None,
285
+ input_ids: Optional[torch.FloatTensor] = None,
286
+ attention_mask: Optional[torch.LongTensor] = None,
287
+ visual_features: Optional[torch.FloatTensor] = None,
288
+ generation_config: Optional[GenerationConfig] = None,
289
+ output_hidden_states: Optional[bool] = None,
290
+ return_dict: Optional[bool] = None,
291
+ **generate_kwargs,
292
+ ) -> torch.LongTensor:
293
+
294
+ assert self.img_context_token_id is not None
295
+ if pixel_values is not None:
296
+ if visual_features is not None:
297
+ vit_embeds = visual_features
298
+ else:
299
+ vit_embeds = self.extract_feature(pixel_values)
300
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
301
+ B, N, C = input_embeds.shape
302
+ input_embeds = input_embeds.reshape(B * N, C)
303
+
304
+ input_ids = input_ids.reshape(B * N)
305
+ selected = (input_ids == self.img_context_token_id)
306
+ assert selected.sum() != 0
307
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
308
+
309
+ input_embeds = input_embeds.reshape(B, N, C)
310
+ else:
311
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
312
+
313
+ outputs = self.language_model.generate(
314
+ inputs_embeds=input_embeds,
315
+ attention_mask=attention_mask,
316
+ generation_config=generation_config,
317
+ output_hidden_states=output_hidden_states,
318
+ return_dict=return_dict,
319
+ use_cache=True,
320
+ **generate_kwargs,
321
+ )
322
+
323
+ return outputs
modeling_phi3.py ADDED
@@ -0,0 +1,1601 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """ PyTorch Phi-3 model."""
16
+
17
+ import inspect
18
+ import math
19
+ import warnings
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
27
+ from transformers.activations import ACT2FN
28
+ from transformers.cache_utils import Cache, DynamicCache
29
+ from transformers.modeling_attn_mask_utils import \
30
+ _prepare_4d_causal_attention_mask
31
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
32
+ CausalLMOutputWithPast,
33
+ SequenceClassifierOutputWithPast,
34
+ TokenClassifierOutput)
35
+ from transformers.modeling_utils import PreTrainedModel
36
+ from transformers.utils import (add_code_sample_docstrings,
37
+ add_start_docstrings,
38
+ add_start_docstrings_to_model_forward,
39
+ is_flash_attn_2_available,
40
+ is_flash_attn_greater_or_equal_2_10, logging,
41
+ replace_return_docstrings)
42
+
43
+ from .configuration_phi3 import Phi3Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ # Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
48
+ # if is_flash_attn_2_available():
49
+ _flash_supports_window_size = False
50
+ try:
51
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
52
+ from flash_attn.bert_padding import (index_first_axis, pad_input, # noqa
53
+ unpad_input)
54
+
55
+ _flash_supports_window_size = 'window_size' in list(inspect.signature(flash_attn_func).parameters)
56
+ except ImportError as error:
57
+ logger.warning(
58
+ f'`flash-attention` package not found, consider installing for better performance: {error}.'
59
+ )
60
+ if not _flash_supports_window_size:
61
+ logger.warning(
62
+ "Current `flash-attenton` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`."
63
+ )
64
+
65
+ _CHECKPOINT_FOR_DOC = 'microsoft/Phi-3-mini-4k-instruct'
66
+ _CONFIG_FOR_DOC = 'Phi3Config'
67
+
68
+ PHI3_PRETRAINED_MODEL_ARCHIVE_LIST = [
69
+ 'microsoft/Phi-3-mini-4k-instruct',
70
+ 'microsoft/Phi-3-mini-128k-instruct',
71
+ # See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
72
+ ]
73
+
74
+
75
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
76
+ class Phi3RMSNorm(nn.Module):
77
+ def __init__(self, hidden_size, eps=1e-6):
78
+ """
79
+ Phi3RMSNorm is equivalent to T5LayerNorm
80
+ """
81
+ super().__init__()
82
+ self.weight = nn.Parameter(torch.ones(hidden_size))
83
+ self.variance_epsilon = eps
84
+
85
+ def forward(self, hidden_states):
86
+ input_dtype = hidden_states.dtype
87
+ hidden_states = hidden_states.to(torch.float32)
88
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
89
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
90
+ return self.weight * hidden_states.to(input_dtype)
91
+
92
+
93
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
94
+ def _get_unpad_data(attention_mask):
95
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
96
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
97
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
98
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
99
+ return (
100
+ indices,
101
+ cu_seqlens,
102
+ max_seqlen_in_batch,
103
+ )
104
+
105
+
106
+ # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
107
+ class Phi3RotaryEmbedding(nn.Module):
108
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
109
+ super().__init__()
110
+
111
+ self.dim = dim
112
+ self.max_position_embeddings = max_position_embeddings
113
+ self.base = base
114
+ self.register_buffer('inv_freq', None, persistent=False)
115
+
116
+ @torch.no_grad()
117
+ def forward(self, x, position_ids, seq_len=None):
118
+ # x: [bs, num_attention_heads, seq_len, head_size]
119
+ if self.inv_freq is None:
120
+ self.inv_freq = 1.0 / (
121
+ self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
122
+ )
123
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
124
+ position_ids_expanded = position_ids[:, None, :].float()
125
+ # Force float32 since bfloat16 loses precision on long contexts
126
+ # See https://github.com/huggingface/transformers/pull/29285
127
+ device_type = x.device.type
128
+ device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
129
+ with torch.autocast(device_type=device_type, enabled=False):
130
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
131
+ emb = torch.cat((freqs, freqs), dim=-1)
132
+ cos = emb.cos()
133
+ sin = emb.sin()
134
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
135
+
136
+
137
+ class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
138
+ def __init__(self, dim, config, device=None):
139
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
140
+
141
+ self.short_factor = config.rope_scaling['short_factor']
142
+ self.long_factor = config.rope_scaling['long_factor']
143
+ self.original_max_position_embeddings = config.original_max_position_embeddings
144
+
145
+ @torch.no_grad()
146
+ def forward(self, x, position_ids, seq_len=None):
147
+ seq_len = torch.max(position_ids) + 1
148
+ if seq_len > self.original_max_position_embeddings:
149
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
150
+ else:
151
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
152
+
153
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
154
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
155
+
156
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
157
+ position_ids_expanded = position_ids[:, None, :].float()
158
+
159
+ # Force float32 since bfloat16 loses precision on long contexts
160
+ # See https://github.com/huggingface/transformers/pull/29285
161
+ device_type = x.device.type
162
+ device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
163
+ with torch.autocast(device_type=device_type, enabled=False):
164
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
165
+ emb = torch.cat((freqs, freqs), dim=-1)
166
+
167
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
168
+ if scale <= 1.0:
169
+ scaling_factor = 1.0
170
+ else:
171
+ scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
172
+
173
+ cos = emb.cos() * scaling_factor
174
+ sin = emb.sin() * scaling_factor
175
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
176
+
177
+
178
+ class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
179
+ def __init__(self, dim, config, device=None):
180
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
181
+
182
+ self.short_factor = config.rope_scaling['short_factor']
183
+ self.long_factor = config.rope_scaling['long_factor']
184
+ self.original_max_position_embeddings = config.original_max_position_embeddings
185
+
186
+ @torch.no_grad()
187
+ def forward(self, x, position_ids, seq_len=None):
188
+ seq_len = torch.max(position_ids) + 1
189
+ if seq_len > self.original_max_position_embeddings:
190
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
191
+ else:
192
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
193
+
194
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
195
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
196
+
197
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
198
+ position_ids_expanded = position_ids[:, None, :].float()
199
+
200
+ # Force float32 since bfloat16 loses precision on long contexts
201
+ # See https://github.com/huggingface/transformers/pull/29285
202
+ device_type = x.device.type
203
+ device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
204
+ with torch.autocast(device_type=device_type, enabled=False):
205
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
206
+ emb = torch.cat((freqs, freqs), dim=-1)
207
+
208
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
209
+ if scale <= 1.0:
210
+ scaling_factor = 1.0
211
+ else:
212
+ scaling_factor = 0.1 * math.log(scale) + 1.0
213
+
214
+ cos = emb.cos() * scaling_factor
215
+ sin = emb.sin() * scaling_factor
216
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
217
+
218
+
219
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
220
+ def rotate_half(x):
221
+ """Rotates half the hidden dims of the input."""
222
+ x1 = x[..., : x.shape[-1] // 2]
223
+ x2 = x[..., x.shape[-1] // 2 :]
224
+ return torch.cat((-x2, x1), dim=-1)
225
+
226
+
227
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
228
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
229
+ """Applies Rotary Position Embedding to the query and key tensors.
230
+
231
+ Args:
232
+ q (`torch.Tensor`): The query tensor.
233
+ k (`torch.Tensor`): The key tensor.
234
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
235
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
236
+ position_ids (`torch.Tensor`, *optional*):
237
+ Deprecated and unused.
238
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
239
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
240
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
241
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
242
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
243
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
244
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
245
+ Returns:
246
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
247
+ """
248
+ cos = cos.unsqueeze(unsqueeze_dim)
249
+ sin = sin.unsqueeze(unsqueeze_dim)
250
+ q_embed = (q * cos) + (rotate_half(q) * sin)
251
+ k_embed = (k * cos) + (rotate_half(k) * sin)
252
+ return q_embed, k_embed
253
+
254
+
255
+ class Phi3MLP(nn.Module):
256
+ def __init__(self, config):
257
+ super().__init__()
258
+
259
+ self.config = config
260
+ self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
261
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
262
+
263
+ self.activation_fn = ACT2FN[config.hidden_act]
264
+
265
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
266
+ up_states = self.gate_up_proj(hidden_states)
267
+
268
+ gate, up_states = up_states.chunk(2, dim=-1)
269
+ up_states = up_states * self.activation_fn(gate)
270
+
271
+ return self.down_proj(up_states)
272
+
273
+
274
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
275
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
276
+ """
277
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
278
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
279
+ """
280
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
281
+ if n_rep == 1:
282
+ return hidden_states
283
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
284
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
285
+
286
+
287
+ class Phi3Attention(nn.Module):
288
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
289
+
290
+ def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
291
+ super().__init__()
292
+ self.config = config
293
+ self.layer_idx = layer_idx
294
+ if layer_idx is None:
295
+ logger.warning_once(
296
+ f'Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will '
297
+ 'lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` '
298
+ 'when creating this class.'
299
+ )
300
+
301
+ self.attention_dropout = config.attention_dropout
302
+ self.hidden_size = config.hidden_size
303
+ self.num_heads = config.num_attention_heads
304
+ self.head_dim = self.hidden_size // self.num_heads
305
+ self.num_key_value_heads = config.num_key_value_heads
306
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
307
+ self.max_position_embeddings = config.max_position_embeddings
308
+ self.original_max_position_embeddings = config.original_max_position_embeddings
309
+ self.rope_theta = config.rope_theta
310
+ self.rope_scaling = config.rope_scaling
311
+ self.is_causal = True
312
+
313
+ if (self.head_dim * self.num_heads) != self.hidden_size:
314
+ raise ValueError(
315
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
316
+ f' and `num_heads`: {self.num_heads}).'
317
+ )
318
+
319
+ op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
320
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
321
+ self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
322
+ self._init_rope()
323
+
324
+ def _init_rope(self):
325
+ if self.rope_scaling is None:
326
+ self.rotary_emb = Phi3RotaryEmbedding(
327
+ self.head_dim,
328
+ max_position_embeddings=self.max_position_embeddings,
329
+ base=self.rope_theta,
330
+ )
331
+ else:
332
+ scaling_type = self.config.rope_scaling['type']
333
+ if scaling_type == 'su':
334
+ self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config)
335
+ elif scaling_type == 'yarn':
336
+ self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config)
337
+ else:
338
+ raise ValueError(f'Unknown RoPE scaling type {scaling_type}')
339
+
340
+ def forward(
341
+ self,
342
+ hidden_states: torch.Tensor,
343
+ attention_mask: Optional[torch.Tensor] = None,
344
+ position_ids: Optional[torch.LongTensor] = None,
345
+ past_key_value: Optional[Cache] = None,
346
+ output_attentions: bool = False,
347
+ use_cache: bool = False,
348
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
349
+ logger.warning_once('You are not running the flash-attention implementation, expect numerical differences.')
350
+
351
+ bsz, q_len, _ = hidden_states.size()
352
+
353
+ qkv = self.qkv_proj(hidden_states)
354
+ query_pos = self.num_heads * self.head_dim
355
+ query_states = qkv[..., :query_pos]
356
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
357
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
358
+
359
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
360
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
361
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
362
+
363
+ kv_seq_len = key_states.shape[-2]
364
+ if past_key_value is not None:
365
+ if self.layer_idx is None:
366
+ raise ValueError(
367
+ f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
368
+ 'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
369
+ 'with a layer index.'
370
+ )
371
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
372
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
373
+
374
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
375
+
376
+ if past_key_value is not None:
377
+ cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
378
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
379
+
380
+ # repeat k/v heads if n_kv_heads < n_heads
381
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
382
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
383
+
384
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
385
+
386
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
387
+ raise ValueError(
388
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
389
+ f' {attn_weights.size()}'
390
+ )
391
+
392
+ if attention_mask is not None:
393
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
394
+ raise ValueError(
395
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
396
+ )
397
+ attn_weights = attn_weights + attention_mask
398
+
399
+ # upcast attention to fp32
400
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
401
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
402
+
403
+ attn_output = torch.matmul(attn_weights, value_states)
404
+
405
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
406
+ raise ValueError(
407
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
408
+ f' {attn_output.size()}'
409
+ )
410
+
411
+ attn_output = attn_output.transpose(1, 2).contiguous()
412
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
413
+
414
+ attn_output = self.o_proj(attn_output)
415
+
416
+ if not output_attentions:
417
+ attn_weights = None
418
+
419
+ return attn_output, attn_weights, past_key_value
420
+
421
+
422
+ class Phi3FlashAttention2(Phi3Attention):
423
+ """
424
+ Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
425
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
426
+ flash attention and deal with padding tokens in case the input contains any of them.
427
+ """
428
+
429
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
430
+ def __init__(self, *args, **kwargs):
431
+ super().__init__(*args, **kwargs)
432
+
433
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
434
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
435
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
436
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
437
+
438
+ def forward(
439
+ self,
440
+ hidden_states: torch.Tensor,
441
+ attention_mask: Optional[torch.LongTensor] = None,
442
+ position_ids: Optional[torch.LongTensor] = None,
443
+ past_key_value: Optional[Cache] = None,
444
+ output_attentions: bool = False,
445
+ use_cache: bool = False,
446
+ **kwargs,
447
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
448
+ # Phi3FlashAttention2 attention does not support output_attentions
449
+
450
+ if not _flash_supports_window_size:
451
+ logger.warning_once(
452
+ "The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
453
+ )
454
+ raise ValueError('The current flash attention version does not support sliding window attention.')
455
+
456
+ output_attentions = False
457
+
458
+ if 'padding_mask' in kwargs:
459
+ warnings.warn(
460
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
461
+ )
462
+
463
+ # overwrite attention_mask with padding_mask
464
+ attention_mask = kwargs.pop('padding_mask')
465
+
466
+ bsz, q_len, _ = hidden_states.size()
467
+
468
+ qkv = self.qkv_proj(hidden_states)
469
+ query_pos = self.num_heads * self.head_dim
470
+ query_states = qkv[..., :query_pos]
471
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
472
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
473
+
474
+ # Flash attention requires the input to have the shape
475
+ # batch_size x seq_length x head_dim x hidden_dim
476
+ # therefore we just need to keep the original shape
477
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
478
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
479
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
480
+
481
+ kv_seq_len = key_states.shape[-2]
482
+ if past_key_value is not None:
483
+ if self.layer_idx is None:
484
+ raise ValueError(
485
+ f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
486
+ 'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
487
+ 'with a layer index.'
488
+ )
489
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
490
+
491
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
492
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
493
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
494
+
495
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
496
+
497
+ use_sliding_windows = (
498
+ _flash_supports_window_size
499
+ and getattr(self.config, 'sliding_window', None) is not None
500
+ and kv_seq_len > self.config.sliding_window
501
+ )
502
+
503
+ if past_key_value is not None:
504
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
505
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
506
+ if (
507
+ getattr(self.config, 'sliding_window', None) is not None
508
+ and kv_seq_len > self.config.sliding_window
509
+ and cache_has_contents
510
+ ):
511
+ slicing_tokens = 1 - self.config.sliding_window
512
+
513
+ past_key = past_key_value[self.layer_idx][0]
514
+ past_value = past_key_value[self.layer_idx][1]
515
+
516
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
517
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
518
+
519
+ if past_key.shape[-2] != self.config.sliding_window - 1:
520
+ raise ValueError(
521
+ f'past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got'
522
+ f' {past_key.shape}'
523
+ )
524
+
525
+ if attention_mask is not None:
526
+ attention_mask = attention_mask[:, slicing_tokens:]
527
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
528
+
529
+ cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
530
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
531
+
532
+ # repeat k/v heads if n_kv_heads < n_heads
533
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
534
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
535
+
536
+ attn_dropout = self.attention_dropout if self.training else 0.0
537
+
538
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
539
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
540
+ # cast them back in the correct dtype just to be sure everything works as expected.
541
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
542
+ # in fp32.
543
+
544
+ if query_states.dtype == torch.float32:
545
+ if torch.is_autocast_enabled():
546
+ target_dtype = torch.get_autocast_gpu_dtype()
547
+ # Handle the case where the model is quantized
548
+ elif hasattr(self.config, '_pre_quantization_dtype'):
549
+ target_dtype = self.config._pre_quantization_dtype
550
+ else:
551
+ target_dtype = self.qkv_proj.weight.dtype
552
+
553
+ logger.warning_once(
554
+ f'The input hidden states seems to be silently casted in float32, this might be related to'
555
+ f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in'
556
+ f' {target_dtype}.'
557
+ )
558
+
559
+ query_states = query_states.to(target_dtype)
560
+ key_states = key_states.to(target_dtype)
561
+ value_states = value_states.to(target_dtype)
562
+
563
+ # Reashape to the expected shape for Flash Attention
564
+ query_states = query_states.transpose(1, 2)
565
+ key_states = key_states.transpose(1, 2)
566
+ value_states = value_states.transpose(1, 2)
567
+
568
+ attn_output = self._flash_attention_forward(
569
+ query_states,
570
+ key_states,
571
+ value_states,
572
+ attention_mask,
573
+ q_len,
574
+ dropout=attn_dropout,
575
+ use_sliding_windows=use_sliding_windows,
576
+ )
577
+
578
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
579
+ attn_output = self.o_proj(attn_output)
580
+
581
+ if not output_attentions:
582
+ attn_weights = None
583
+
584
+ return attn_output, attn_weights, past_key_value
585
+
586
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
587
+ def _flash_attention_forward(
588
+ self,
589
+ query_states,
590
+ key_states,
591
+ value_states,
592
+ attention_mask,
593
+ query_length,
594
+ dropout=0.0,
595
+ softmax_scale=None,
596
+ use_sliding_windows=False,
597
+ ):
598
+ """
599
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
600
+ first unpad the input, then computes the attention scores and pad the final attention scores.
601
+
602
+ Args:
603
+ query_states (`torch.Tensor`):
604
+ Input query states to be passed to Flash Attention API
605
+ key_states (`torch.Tensor`):
606
+ Input key states to be passed to Flash Attention API
607
+ value_states (`torch.Tensor`):
608
+ Input value states to be passed to Flash Attention API
609
+ attention_mask (`torch.Tensor`):
610
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
611
+ position of padding tokens and 1 for the position of non-padding tokens.
612
+ dropout (`float`):
613
+ Attention dropout
614
+ softmax_scale (`float`, *optional*):
615
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
616
+ use_sliding_windows (`bool`, *optional*):
617
+ Whether to activate sliding window attention.
618
+ """
619
+ if not self._flash_attn_uses_top_left_mask:
620
+ causal = self.is_causal
621
+ else:
622
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
623
+ causal = self.is_causal and query_length != 1
624
+
625
+ # Contains at least one padding token in the sequence
626
+ if attention_mask is not None:
627
+ batch_size = query_states.shape[0]
628
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
629
+ query_states, key_states, value_states, attention_mask, query_length
630
+ )
631
+
632
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
633
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
634
+
635
+ if not use_sliding_windows:
636
+ attn_output_unpad = flash_attn_varlen_func(
637
+ query_states,
638
+ key_states,
639
+ value_states,
640
+ cu_seqlens_q=cu_seqlens_q,
641
+ cu_seqlens_k=cu_seqlens_k,
642
+ max_seqlen_q=max_seqlen_in_batch_q,
643
+ max_seqlen_k=max_seqlen_in_batch_k,
644
+ dropout_p=dropout,
645
+ softmax_scale=softmax_scale,
646
+ causal=causal,
647
+ )
648
+ else:
649
+ attn_output_unpad = flash_attn_varlen_func(
650
+ query_states,
651
+ key_states,
652
+ value_states,
653
+ cu_seqlens_q=cu_seqlens_q,
654
+ cu_seqlens_k=cu_seqlens_k,
655
+ max_seqlen_q=max_seqlen_in_batch_q,
656
+ max_seqlen_k=max_seqlen_in_batch_k,
657
+ dropout_p=dropout,
658
+ softmax_scale=softmax_scale,
659
+ causal=causal,
660
+ window_size=(self.config.sliding_window, self.config.sliding_window),
661
+ )
662
+
663
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
664
+ else:
665
+ if not use_sliding_windows:
666
+ attn_output = flash_attn_func(
667
+ query_states,
668
+ key_states,
669
+ value_states,
670
+ dropout,
671
+ softmax_scale=softmax_scale,
672
+ causal=causal,
673
+ )
674
+ else:
675
+ attn_output = flash_attn_func(
676
+ query_states,
677
+ key_states,
678
+ value_states,
679
+ dropout,
680
+ softmax_scale=softmax_scale,
681
+ causal=causal,
682
+ window_size=(self.config.sliding_window, self.config.sliding_window),
683
+ )
684
+
685
+ return attn_output
686
+
687
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
688
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
689
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
690
+
691
+ # On the first iteration we need to properly re-create the padding mask
692
+ # by slicing it on the proper place
693
+ if kv_seq_len != attention_mask.shape[-1]:
694
+ attention_mask_num_tokens = attention_mask.shape[-1]
695
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
696
+
697
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
698
+
699
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
700
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
701
+
702
+ if query_length == kv_seq_len:
703
+ query_layer = index_first_axis(
704
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
705
+ )
706
+ cu_seqlens_q = cu_seqlens_k
707
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
708
+ indices_q = indices_k
709
+ elif query_length == 1:
710
+ max_seqlen_in_batch_q = 1
711
+ cu_seqlens_q = torch.arange(
712
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
713
+ ) # There is a memcpy here, that is very bad.
714
+ indices_q = cu_seqlens_q[:-1]
715
+ query_layer = query_layer.squeeze(1)
716
+ else:
717
+ # The -q_len: slice assumes left padding.
718
+ attention_mask = attention_mask[:, -query_length:]
719
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
720
+
721
+ return (
722
+ query_layer,
723
+ key_layer,
724
+ value_layer,
725
+ indices_q,
726
+ (cu_seqlens_q, cu_seqlens_k),
727
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
728
+ )
729
+
730
+
731
+ # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
732
+ # TODO @Arthur no longer copied from LLama after static cache
733
+ class Phi3SdpaAttention(Phi3Attention):
734
+ """
735
+ Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
736
+ `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
737
+ SDPA API.
738
+ """
739
+
740
+ # Adapted from Phi3Attention.forward
741
+ def forward(
742
+ self,
743
+ hidden_states: torch.Tensor,
744
+ attention_mask: Optional[torch.Tensor] = None,
745
+ position_ids: Optional[torch.LongTensor] = None,
746
+ past_key_value: Optional[Cache] = None,
747
+ output_attentions: bool = False,
748
+ use_cache: bool = False,
749
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
750
+ if output_attentions:
751
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
752
+ logger.warning_once(
753
+ 'Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, '
754
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
755
+ )
756
+ return super().forward(
757
+ hidden_states=hidden_states,
758
+ attention_mask=attention_mask,
759
+ position_ids=position_ids,
760
+ past_key_value=past_key_value,
761
+ output_attentions=output_attentions,
762
+ use_cache=use_cache,
763
+ )
764
+
765
+ bsz, q_len, _ = hidden_states.size()
766
+
767
+ qkv = self.qkv_proj(hidden_states)
768
+ query_pos = self.num_heads * self.head_dim
769
+ query_states = qkv[..., :query_pos]
770
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
771
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
772
+
773
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
774
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
775
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
776
+
777
+ kv_seq_len = key_states.shape[-2]
778
+ if past_key_value is not None:
779
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
780
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
781
+
782
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
783
+
784
+ if past_key_value is not None:
785
+ cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
786
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
787
+
788
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
789
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
790
+
791
+ if attention_mask is not None:
792
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
793
+ raise ValueError(
794
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
795
+ )
796
+
797
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
798
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
799
+ if query_states.device.type == 'cuda' and attention_mask is not None:
800
+ query_states = query_states.contiguous()
801
+ key_states = key_states.contiguous()
802
+ value_states = value_states.contiguous()
803
+
804
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
805
+ query_states,
806
+ key_states,
807
+ value_states,
808
+ attn_mask=attention_mask,
809
+ dropout_p=self.attention_dropout if self.training else 0.0,
810
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
811
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
812
+ )
813
+
814
+ attn_output = attn_output.transpose(1, 2).contiguous()
815
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
816
+
817
+ attn_output = self.o_proj(attn_output)
818
+
819
+ return attn_output, None, past_key_value
820
+
821
+
822
+ PHI3_ATTENTION_CLASSES = {
823
+ 'eager': Phi3Attention,
824
+ 'flash_attention_2': Phi3FlashAttention2,
825
+ 'sdpa': Phi3SdpaAttention,
826
+ }
827
+
828
+
829
+ class Phi3DecoderLayer(nn.Module):
830
+ def __init__(self, config: Phi3Config, layer_idx: int):
831
+ super().__init__()
832
+
833
+ self.config = config
834
+ self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
835
+
836
+ self.mlp = Phi3MLP(config)
837
+ self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
838
+
839
+ self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
840
+ self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
841
+ self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
842
+
843
+ def forward(
844
+ self,
845
+ hidden_states: torch.Tensor,
846
+ attention_mask: Optional[torch.Tensor] = None,
847
+ position_ids: Optional[torch.LongTensor] = None,
848
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
849
+ output_attentions: Optional[bool] = False,
850
+ use_cache: Optional[bool] = False,
851
+ **kwargs,
852
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
853
+ if 'padding_mask' in kwargs:
854
+ warnings.warn(
855
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
856
+ )
857
+ """
858
+ Args:
859
+ hidden_states (`torch.FloatTensor`):
860
+ input to the layer of shape `(batch, seq_len, embed_dim)`
861
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
862
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
863
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
864
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
865
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
866
+ output_attentions (`bool`, *optional*):
867
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
868
+ returned tensors for more detail.
869
+ use_cache (`bool`, *optional*):
870
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
871
+ (see `past_key_values`).
872
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
873
+ """
874
+
875
+ residual = hidden_states
876
+
877
+ hidden_states = self.input_layernorm(hidden_states)
878
+
879
+ # Self Attention
880
+ attn_outputs, self_attn_weights, present_key_value = self.self_attn(
881
+ hidden_states=hidden_states,
882
+ attention_mask=attention_mask,
883
+ position_ids=position_ids,
884
+ past_key_value=past_key_value,
885
+ output_attentions=output_attentions,
886
+ use_cache=use_cache,
887
+ )
888
+
889
+ hidden_states = residual + self.resid_attn_dropout(attn_outputs)
890
+
891
+ residual = hidden_states
892
+ hidden_states = self.post_attention_layernorm(hidden_states)
893
+ hidden_states = self.mlp(hidden_states)
894
+ hidden_states = residual + self.resid_mlp_dropout(hidden_states)
895
+
896
+ outputs = (hidden_states,)
897
+
898
+ if output_attentions:
899
+ outputs += (self_attn_weights,)
900
+
901
+ if use_cache:
902
+ outputs += (present_key_value,)
903
+
904
+ return outputs
905
+
906
+
907
+ PHI3_START_DOCSTRING = r"""
908
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
909
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
910
+ etc.)
911
+
912
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
913
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
914
+ and behavior.
915
+
916
+ Parameters:
917
+ config ([`Phi3Config`]):
918
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
919
+ load the weights associated with the model, only the configuration. Check out the
920
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
921
+ """
922
+
923
+
924
+ @add_start_docstrings(
925
+ 'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
926
+ PHI3_START_DOCSTRING,
927
+ )
928
+ class Phi3PreTrainedModel(PreTrainedModel):
929
+ config_class = Phi3Config
930
+ base_model_prefix = 'model'
931
+ supports_gradient_checkpointing = True
932
+ _no_split_modules = ['Phi3DecoderLayer']
933
+ _skip_keys_device_placement = 'past_key_values'
934
+ _supports_flash_attn_2 = True
935
+ _supports_sdpa = False
936
+ _supports_cache_class = True
937
+
938
+ _version = '0.0.5'
939
+
940
+ def _init_weights(self, module):
941
+ std = self.config.initializer_range
942
+ if isinstance(module, nn.Linear):
943
+ module.weight.data.normal_(mean=0.0, std=std)
944
+ if module.bias is not None:
945
+ module.bias.data.zero_()
946
+ elif isinstance(module, nn.Embedding):
947
+ module.weight.data.normal_(mean=0.0, std=std)
948
+ if module.padding_idx is not None:
949
+ module.weight.data[module.padding_idx].zero_()
950
+
951
+
952
+ PHI3_INPUTS_DOCSTRING = r"""
953
+ Args:
954
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
955
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
956
+ it.
957
+
958
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
959
+ [`PreTrainedTokenizer.__call__`] for details.
960
+
961
+ [What are input IDs?](../glossary#input-ids)
962
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
963
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
964
+
965
+ - 1 for tokens that are **not masked**,
966
+ - 0 for tokens that are **masked**.
967
+
968
+ [What are attention masks?](../glossary#attention-mask)
969
+
970
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
971
+ [`PreTrainedTokenizer.__call__`] for details.
972
+
973
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
974
+ `past_key_values`).
975
+
976
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
977
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
978
+ information on the default strategy.
979
+
980
+ - 1 indicates the head is **not masked**,
981
+ - 0 indicates the head is **masked**.
982
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
983
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
984
+ config.n_positions - 1]`.
985
+
986
+ [What are position IDs?](../glossary#position-ids)
987
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
988
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
989
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
990
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
991
+
992
+ Two formats are allowed:
993
+ - a [`~cache_utils.Cache`] instance;
994
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
995
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
996
+ cache format.
997
+
998
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
999
+ legacy cache format will be returned.
1000
+
1001
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1002
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1003
+ of shape `(batch_size, sequence_length)`.
1004
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1005
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1006
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1007
+ model's internal embedding lookup matrix.
1008
+ use_cache (`bool`, *optional*):
1009
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1010
+ `past_key_values`).
1011
+ output_attentions (`bool`, *optional*):
1012
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1013
+ tensors for more detail.
1014
+ output_hidden_states (`bool`, *optional*):
1015
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1016
+ more detail.
1017
+ return_dict (`bool`, *optional*):
1018
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1019
+ """
1020
+
1021
+
1022
+ @add_start_docstrings(
1023
+ 'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
1024
+ PHI3_START_DOCSTRING,
1025
+ )
1026
+ class Phi3Model(Phi3PreTrainedModel):
1027
+ """
1028
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
1029
+
1030
+ Args:
1031
+ config: Phi3Config
1032
+ """
1033
+
1034
+ def __init__(self, config: Phi3Config):
1035
+ super().__init__(config)
1036
+ self.padding_idx = config.pad_token_id
1037
+ self.vocab_size = config.vocab_size
1038
+
1039
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1040
+ self.embed_dropout = nn.Dropout(config.embd_pdrop)
1041
+ self.layers = nn.ModuleList(
1042
+ [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1043
+ )
1044
+ self._attn_implementation = config._attn_implementation
1045
+ self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1046
+
1047
+ self.gradient_checkpointing = False
1048
+ # Initialize weights and apply final processing
1049
+ self.post_init()
1050
+
1051
+ def get_input_embeddings(self):
1052
+ return self.embed_tokens
1053
+
1054
+ def set_input_embeddings(self, value):
1055
+ self.embed_tokens = value
1056
+
1057
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1058
+ def forward(
1059
+ self,
1060
+ input_ids: torch.LongTensor = None,
1061
+ attention_mask: Optional[torch.Tensor] = None,
1062
+ position_ids: Optional[torch.LongTensor] = None,
1063
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1064
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1065
+ use_cache: Optional[bool] = None,
1066
+ output_attentions: Optional[bool] = None,
1067
+ output_hidden_states: Optional[bool] = None,
1068
+ return_dict: Optional[bool] = None,
1069
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1070
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1071
+ output_hidden_states = (
1072
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1073
+ )
1074
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1075
+
1076
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1077
+
1078
+ # retrieve input_ids and inputs_embeds
1079
+ if input_ids is not None and inputs_embeds is not None:
1080
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
1081
+ elif input_ids is not None:
1082
+ batch_size, seq_length = input_ids.shape[:2]
1083
+ elif inputs_embeds is not None:
1084
+ batch_size, seq_length = inputs_embeds.shape[:2]
1085
+ else:
1086
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
1087
+
1088
+ past_key_values_length = 0
1089
+
1090
+ if self.gradient_checkpointing and self.training:
1091
+ if use_cache:
1092
+ logger.warning_once(
1093
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
1094
+ )
1095
+ use_cache = False
1096
+
1097
+ if use_cache:
1098
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1099
+ if use_legacy_cache:
1100
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1101
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1102
+
1103
+ if position_ids is None:
1104
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1105
+ position_ids = torch.arange(
1106
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1107
+ )
1108
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1109
+ else:
1110
+ position_ids = position_ids.view(-1, seq_length).long()
1111
+
1112
+ if inputs_embeds is None:
1113
+ inputs_embeds = self.embed_tokens(input_ids)
1114
+
1115
+ if attention_mask is not None and self._attn_implementation == 'flash_attention_2' and use_cache:
1116
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1117
+ if is_padding_right:
1118
+ raise ValueError(
1119
+ "You are attempting to perform batched generation with padding_side='right'"
1120
+ ' this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to '
1121
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1122
+ )
1123
+
1124
+ if self._attn_implementation == 'flash_attention_2':
1125
+ # 2d mask is passed through the layers
1126
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1127
+ else:
1128
+ # 4d mask is passed through the layers
1129
+ attention_mask = _prepare_4d_causal_attention_mask(
1130
+ attention_mask,
1131
+ (batch_size, seq_length),
1132
+ inputs_embeds,
1133
+ past_key_values_length,
1134
+ sliding_window=self.config.sliding_window,
1135
+ )
1136
+
1137
+ hidden_states = inputs_embeds
1138
+
1139
+ # decoder layers
1140
+ all_hidden_states = () if output_hidden_states else None
1141
+ all_self_attns = () if output_attentions else None
1142
+ next_decoder_cache = None
1143
+
1144
+ for decoder_layer in self.layers:
1145
+ if output_hidden_states:
1146
+ all_hidden_states += (hidden_states,)
1147
+
1148
+ if self.gradient_checkpointing and self.training:
1149
+ layer_outputs = self._gradient_checkpointing_func(
1150
+ decoder_layer.__call__,
1151
+ hidden_states,
1152
+ attention_mask,
1153
+ position_ids,
1154
+ past_key_values,
1155
+ output_attentions,
1156
+ use_cache,
1157
+ )
1158
+ else:
1159
+ layer_outputs = decoder_layer(
1160
+ hidden_states,
1161
+ attention_mask=attention_mask,
1162
+ position_ids=position_ids,
1163
+ past_key_value=past_key_values,
1164
+ output_attentions=output_attentions,
1165
+ use_cache=use_cache,
1166
+ )
1167
+
1168
+ hidden_states = layer_outputs[0]
1169
+
1170
+ if use_cache:
1171
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1172
+
1173
+ if output_attentions:
1174
+ all_self_attns += (layer_outputs[1],)
1175
+
1176
+ hidden_states = self.norm(hidden_states)
1177
+
1178
+ # add hidden states from the last decoder layer
1179
+ if output_hidden_states:
1180
+ all_hidden_states += (hidden_states,)
1181
+
1182
+ next_cache = None
1183
+ if use_cache:
1184
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1185
+ if not return_dict:
1186
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1187
+ return BaseModelOutputWithPast(
1188
+ last_hidden_state=hidden_states,
1189
+ past_key_values=next_cache,
1190
+ hidden_states=all_hidden_states,
1191
+ attentions=all_self_attns,
1192
+ )
1193
+
1194
+
1195
+ class Phi3ForCausalLM(Phi3PreTrainedModel):
1196
+ _tied_weights_keys = ['lm_head.weight']
1197
+
1198
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
1199
+ def __init__(self, config):
1200
+ super().__init__(config)
1201
+ self.model = Phi3Model(config)
1202
+ self.vocab_size = config.vocab_size
1203
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1204
+
1205
+ # Initialize weights and apply final processing
1206
+ self.post_init()
1207
+
1208
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
1209
+ def get_input_embeddings(self):
1210
+ return self.model.embed_tokens
1211
+
1212
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
1213
+ def set_input_embeddings(self, value):
1214
+ self.model.embed_tokens = value
1215
+
1216
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
1217
+ def get_output_embeddings(self):
1218
+ return self.lm_head
1219
+
1220
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
1221
+ def set_output_embeddings(self, new_embeddings):
1222
+ self.lm_head = new_embeddings
1223
+
1224
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
1225
+ def set_decoder(self, decoder):
1226
+ self.model = decoder
1227
+
1228
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
1229
+ def get_decoder(self):
1230
+ return self.model
1231
+
1232
+ # Ignore copy
1233
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1234
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1235
+ def forward(
1236
+ self,
1237
+ input_ids: torch.LongTensor = None,
1238
+ attention_mask: Optional[torch.Tensor] = None,
1239
+ position_ids: Optional[torch.LongTensor] = None,
1240
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1241
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1242
+ labels: Optional[torch.LongTensor] = None,
1243
+ use_cache: Optional[bool] = None,
1244
+ output_attentions: Optional[bool] = None,
1245
+ output_hidden_states: Optional[bool] = None,
1246
+ return_dict: Optional[bool] = None,
1247
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1248
+ r"""
1249
+ Args:
1250
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1251
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1252
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1253
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1254
+
1255
+ Returns:
1256
+
1257
+ Example:
1258
+
1259
+ ```python
1260
+ >>> from transformers import AutoTokenizer, Phi3ForCausalLM
1261
+
1262
+ >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1263
+ >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1264
+
1265
+ >>> prompt = "This is an example script ."
1266
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1267
+
1268
+ >>> # Generate
1269
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1270
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1271
+ 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
1272
+ ```"""
1273
+
1274
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1275
+ output_hidden_states = (
1276
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1277
+ )
1278
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1279
+
1280
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1281
+ outputs = self.model(
1282
+ input_ids=input_ids,
1283
+ attention_mask=attention_mask,
1284
+ position_ids=position_ids,
1285
+ past_key_values=past_key_values,
1286
+ inputs_embeds=inputs_embeds,
1287
+ use_cache=use_cache,
1288
+ output_attentions=output_attentions,
1289
+ output_hidden_states=output_hidden_states,
1290
+ return_dict=return_dict,
1291
+ )
1292
+
1293
+ hidden_states = outputs[0]
1294
+ logits = self.lm_head(hidden_states)
1295
+ logits = logits.float()
1296
+
1297
+ loss = None
1298
+ if labels is not None:
1299
+ # Shift so that tokens < n predict n
1300
+ shift_logits = logits[..., :-1, :].contiguous()
1301
+ shift_labels = labels[..., 1:].contiguous()
1302
+ # Flatten the tokens
1303
+ loss_fct = CrossEntropyLoss()
1304
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1305
+ shift_labels = shift_labels.view(-1)
1306
+ # Enable model parallelism
1307
+ shift_labels = shift_labels.to(shift_logits.device)
1308
+ loss = loss_fct(shift_logits, shift_labels)
1309
+
1310
+ if not return_dict:
1311
+ output = (logits,) + outputs[1:]
1312
+ return (loss,) + output if loss is not None else output
1313
+
1314
+ return CausalLMOutputWithPast(
1315
+ loss=loss,
1316
+ logits=logits,
1317
+ past_key_values=outputs.past_key_values,
1318
+ hidden_states=outputs.hidden_states,
1319
+ attentions=outputs.attentions,
1320
+ )
1321
+
1322
+ # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
1323
+ def prepare_inputs_for_generation(
1324
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1325
+ ):
1326
+ if past_key_values is not None:
1327
+ if isinstance(past_key_values, Cache):
1328
+ cache_length = past_key_values.get_seq_length()
1329
+ past_length = past_key_values.seen_tokens
1330
+ max_cache_length = past_key_values.get_max_length()
1331
+ else:
1332
+ cache_length = past_length = past_key_values[0][0].shape[2]
1333
+ max_cache_length = None
1334
+
1335
+ # Keep only the unprocessed tokens:
1336
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1337
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1338
+ # input)
1339
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1340
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1341
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1342
+ # input_ids based on the past_length.
1343
+ elif past_length < input_ids.shape[1]:
1344
+ input_ids = input_ids[:, past_length:]
1345
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1346
+
1347
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1348
+ if (
1349
+ max_cache_length is not None
1350
+ and attention_mask is not None
1351
+ and cache_length + input_ids.shape[1] > max_cache_length
1352
+ ):
1353
+ attention_mask = attention_mask[:, -max_cache_length:]
1354
+
1355
+ position_ids = kwargs.get('position_ids', None)
1356
+ if attention_mask is not None and position_ids is None:
1357
+ # create position_ids on the fly for batch generation
1358
+ position_ids = attention_mask.long().cumsum(-1) - 1
1359
+ position_ids.masked_fill_(attention_mask == 0, 1)
1360
+ if past_key_values:
1361
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1362
+
1363
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1364
+ if inputs_embeds is not None and past_key_values is None:
1365
+ model_inputs = {'inputs_embeds': inputs_embeds}
1366
+ else:
1367
+ model_inputs = {'input_ids': input_ids}
1368
+
1369
+ model_inputs.update(
1370
+ {
1371
+ 'position_ids': position_ids,
1372
+ 'past_key_values': past_key_values,
1373
+ 'use_cache': kwargs.get('use_cache'),
1374
+ 'attention_mask': attention_mask,
1375
+ }
1376
+ )
1377
+ return model_inputs
1378
+
1379
+ @staticmethod
1380
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1381
+ def _reorder_cache(past_key_values, beam_idx):
1382
+ reordered_past = ()
1383
+ for layer_past in past_key_values:
1384
+ reordered_past += (
1385
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1386
+ )
1387
+ return reordered_past
1388
+
1389
+
1390
+ @add_start_docstrings(
1391
+ """
1392
+ The [`Phi3Model`] with a sequence classification head on top (linear layer).
1393
+
1394
+ [`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1395
+ (e.g. GPT-2) do.
1396
+
1397
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1398
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1399
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1400
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1401
+ each row of the batch).
1402
+ """,
1403
+ PHI3_START_DOCSTRING,
1404
+ )
1405
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
1406
+ class Phi3ForSequenceClassification(Phi3PreTrainedModel):
1407
+ def __init__(self, config):
1408
+ super().__init__(config)
1409
+ self.num_labels = config.num_labels
1410
+ self.model = Phi3Model(config)
1411
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1412
+
1413
+ # Initialize weights and apply final processing
1414
+ self.post_init()
1415
+
1416
+ def get_input_embeddings(self):
1417
+ return self.model.embed_tokens
1418
+
1419
+ def set_input_embeddings(self, value):
1420
+ self.model.embed_tokens = value
1421
+
1422
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1423
+ def forward(
1424
+ self,
1425
+ input_ids: torch.LongTensor = None,
1426
+ attention_mask: Optional[torch.Tensor] = None,
1427
+ position_ids: Optional[torch.LongTensor] = None,
1428
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1429
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1430
+ labels: Optional[torch.LongTensor] = None,
1431
+ use_cache: Optional[bool] = None,
1432
+ output_attentions: Optional[bool] = None,
1433
+ output_hidden_states: Optional[bool] = None,
1434
+ return_dict: Optional[bool] = None,
1435
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1436
+ r"""
1437
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1438
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1439
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1440
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1441
+ """
1442
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1443
+
1444
+ model_outputs = self.model(
1445
+ input_ids,
1446
+ attention_mask=attention_mask,
1447
+ position_ids=position_ids,
1448
+ past_key_values=past_key_values,
1449
+ inputs_embeds=inputs_embeds,
1450
+ use_cache=use_cache,
1451
+ output_attentions=output_attentions,
1452
+ output_hidden_states=output_hidden_states,
1453
+ return_dict=return_dict,
1454
+ )
1455
+ hidden_states = model_outputs[0]
1456
+ logits = self.score(hidden_states)
1457
+
1458
+ if input_ids is not None:
1459
+ batch_size = input_ids.shape[0]
1460
+ else:
1461
+ batch_size = inputs_embeds.shape[0]
1462
+
1463
+ if self.config.pad_token_id is None and batch_size != 1:
1464
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1465
+ if self.config.pad_token_id is None:
1466
+ sequence_lengths = -1
1467
+ else:
1468
+ if input_ids is not None:
1469
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1470
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1471
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1472
+ sequence_lengths = sequence_lengths.to(logits.device)
1473
+ else:
1474
+ sequence_lengths = -1
1475
+
1476
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1477
+
1478
+ loss = None
1479
+ if labels is not None:
1480
+ labels = labels.to(logits.device)
1481
+ if self.config.problem_type is None:
1482
+ if self.num_labels == 1:
1483
+ self.config.problem_type = 'regression'
1484
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1485
+ self.config.problem_type = 'single_label_classification'
1486
+ else:
1487
+ self.config.problem_type = 'multi_label_classification'
1488
+
1489
+ if self.config.problem_type == 'regression':
1490
+ loss_fct = MSELoss()
1491
+ if self.num_labels == 1:
1492
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1493
+ else:
1494
+ loss = loss_fct(pooled_logits, labels)
1495
+ elif self.config.problem_type == 'single_label_classification':
1496
+ loss_fct = CrossEntropyLoss()
1497
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1498
+ elif self.config.problem_type == 'multi_label_classification':
1499
+ loss_fct = BCEWithLogitsLoss()
1500
+ loss = loss_fct(pooled_logits, labels)
1501
+ if not return_dict:
1502
+ output = (pooled_logits,) + model_outputs[1:]
1503
+ return ((loss,) + output) if loss is not None else output
1504
+
1505
+ return SequenceClassifierOutputWithPast(
1506
+ loss=loss,
1507
+ logits=pooled_logits,
1508
+ past_key_values=model_outputs.past_key_values,
1509
+ hidden_states=model_outputs.hidden_states,
1510
+ attentions=model_outputs.attentions,
1511
+ )
1512
+
1513
+
1514
+ @add_start_docstrings(
1515
+ """
1516
+ [`Phi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1517
+ Named-Entity-Recognition (NER) tasks.
1518
+ """,
1519
+ PHI3_START_DOCSTRING,
1520
+ )
1521
+ # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
1522
+ class Phi3ForTokenClassification(Phi3PreTrainedModel):
1523
+ def __init__(self, config: Phi3Config):
1524
+ super().__init__(config)
1525
+ self.num_labels = config.num_labels
1526
+
1527
+ self.model = Phi3Model(config)
1528
+ if hasattr(config, 'classifier_dropout') and config.classifier_dropout is not None:
1529
+ classifier_dropout = config.classifier_dropout
1530
+ elif hasattr(config, 'hidden_dropout') and config.hidden_dropout is not None:
1531
+ classifier_dropout = config.hidden_dropout
1532
+ else:
1533
+ classifier_dropout = 0.1
1534
+ self.dropout = nn.Dropout(classifier_dropout)
1535
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1536
+
1537
+ # Initialize weights and apply final processing
1538
+ self.post_init()
1539
+
1540
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1541
+ @add_code_sample_docstrings(
1542
+ checkpoint=_CHECKPOINT_FOR_DOC,
1543
+ output_type=TokenClassifierOutput,
1544
+ config_class=_CONFIG_FOR_DOC,
1545
+ )
1546
+ def forward(
1547
+ self,
1548
+ input_ids: Optional[torch.LongTensor] = None,
1549
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1550
+ attention_mask: Optional[torch.Tensor] = None,
1551
+ inputs_embeds: Optional[torch.Tensor] = None,
1552
+ labels: Optional[torch.Tensor] = None,
1553
+ use_cache: Optional[bool] = None,
1554
+ output_attentions: Optional[bool] = None,
1555
+ output_hidden_states: Optional[bool] = None,
1556
+ return_dict: Optional[bool] = None,
1557
+ **deprecated_arguments,
1558
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1559
+ r"""
1560
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1561
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1562
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1563
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1564
+ """
1565
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1566
+
1567
+ model_outputs = self.model(
1568
+ input_ids,
1569
+ past_key_values=past_key_values,
1570
+ attention_mask=attention_mask,
1571
+ inputs_embeds=inputs_embeds,
1572
+ use_cache=use_cache,
1573
+ output_attentions=output_attentions,
1574
+ output_hidden_states=output_hidden_states,
1575
+ return_dict=return_dict,
1576
+ )
1577
+
1578
+ hidden_states = model_outputs[0]
1579
+ hidden_states = self.dropout(hidden_states)
1580
+ logits = self.classifier(hidden_states)
1581
+
1582
+ loss = None
1583
+ if labels is not None:
1584
+ # move labels to correct device to enable model parallelism
1585
+ labels = labels.to(logits.device)
1586
+ batch_size, seq_length = labels.shape
1587
+ loss_fct = CrossEntropyLoss()
1588
+ loss = loss_fct(
1589
+ logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
1590
+ )
1591
+
1592
+ if not return_dict:
1593
+ output = (logits,) + model_outputs[2:]
1594
+ return ((loss,) + output) if loss is not None else output
1595
+
1596
+ return TokenClassifierOutput(
1597
+ loss=loss,
1598
+ logits=logits,
1599
+ hidden_states=model_outputs.hidden_states,
1600
+ attentions=model_outputs.attentions,
1601
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<img>",
4
+ "</img>",
5
+ "<IMG_CONTEXT>",
6
+ "<quad>",
7
+ "</quad>",
8
+ "<ref>",
9
+ "</ref>",
10
+ "<box>",
11
+ "</box>"
12
+ ],
13
+ "bos_token": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "eos_token": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": true,
25
+ "single_word": false
26
+ },
27
+ "pad_token": {
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": true,
32
+ "single_word": false
33
+ },
34
+ "unk_token": {
35
+ "content": "<unk>",
36
+ "lstrip": false,
37
+ "normalized": false,
38
+ "rstrip": false,
39
+ "single_word": false
40
+ }
41
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": true,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "<|endoftext|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32001": {
38
+ "content": "<|assistant|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": true,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32002": {
46
+ "content": "<|placeholder1|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": true,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32003": {
54
+ "content": "<|placeholder2|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": true,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "32004": {
62
+ "content": "<|placeholder3|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": true,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "32005": {
70
+ "content": "<|placeholder4|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": true,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "32006": {
78
+ "content": "<|system|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": true,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "32007": {
86
+ "content": "<|end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": true,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "32008": {
94
+ "content": "<|placeholder5|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": true,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "32009": {
102
+ "content": "<|placeholder6|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": true,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "32010": {
110
+ "content": "<|user|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": true,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "32011": {
118
+ "content": "<img>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "32012": {
126
+ "content": "</img>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "32013": {
134
+ "content": "<IMG_CONTEXT>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "32014": {
142
+ "content": "<quad>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "32015": {
150
+ "content": "</quad>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "32016": {
158
+ "content": "<ref>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "32017": {
166
+ "content": "</ref>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "32018": {
174
+ "content": "<box>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ },
181
+ "32019": {
182
+ "content": "</box>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ }
189
+ },
190
+ "additional_special_tokens": [
191
+ "<img>",
192
+ "</img>",
193
+ "<IMG_CONTEXT>",
194
+ "<quad>",
195
+ "</quad>",
196
+ "<ref>",
197
+ "</ref>",
198
+ "<box>",
199
+ "</box>"
200
+ ],
201
+ "bos_token": "<s>",
202
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
203
+ "clean_up_tokenization_spaces": false,
204
+ "eos_token": "</s>",
205
+ "legacy": false,
206
+ "model_max_length": 8192,
207
+ "pad_token": "</s>",
208
+ "padding_side": "right",
209
+ "sp_model_kwargs": {},
210
+ "spaces_between_special_tokens": false,
211
+ "tokenizer_class": "LlamaTokenizer",
212
+ "unk_token": "<unk>",
213
+ "use_default_system_prompt": false
214
+ }