cuierfei commited on
Commit
9c22dd0
·
verified ·
1 Parent(s): 277b5e2

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -576,7 +576,7 @@ To deploy InternVL2 as an API, please configure the chat template config first.
576
  LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
577
 
578
  ```shell
579
- lmdeploy serve api_server OpenGVLab/InternVL2-8B --model-name InternVL2-8B --backend turbomind --server-port 23333 --chat-template chat_template.json
580
  ```
581
 
582
  To use the OpenAI-style interface, you need to install OpenAI:
@@ -593,7 +593,7 @@ from openai import OpenAI
593
  client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
594
  model_name = client.models.list().data[0].id
595
  response = client.chat.completions.create(
596
- model="InternVL2-8B",
597
  messages=[{
598
  'role':
599
  'user',
@@ -623,7 +623,7 @@ TODO
623
 
624
  ## License
625
 
626
- This project is released under the MIT license, while InternLM is licensed under the Apache-2.0 license.
627
 
628
  ## Citation
629
 
@@ -872,7 +872,7 @@ print(sess.response.text)
872
  LMDeploy 的 `api_server` 使模型能够通过一个命令轻松打包成服务。提供的 RESTful API 与 OpenAI 的接口兼容。以下是服务启动的示例:
873
 
874
  ```shell
875
- lmdeploy serve api_server OpenGVLab/InternVL2-8B --model-name InternVL2-8B --backend turbomind --server-port 23333 --chat-template chat_template.json
876
  ```
877
 
878
  为了使用OpenAI风格的API接口,您需要安装OpenAI:
@@ -889,7 +889,7 @@ from openai import OpenAI
889
  client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
890
  model_name = client.models.list().data[0].id
891
  response = client.chat.completions.create(
892
- model="InternVL2-8B",
893
  messages=[{
894
  'role':
895
  'user',
 
576
  LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
577
 
578
  ```shell
579
+ lmdeploy serve api_server OpenGVLab/InternVL2-8B --backend turbomind --server-port 23333 --chat-template chat_template.json
580
  ```
581
 
582
  To use the OpenAI-style interface, you need to install OpenAI:
 
593
  client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
594
  model_name = client.models.list().data[0].id
595
  response = client.chat.completions.create(
596
+ model=model_name,
597
  messages=[{
598
  'role':
599
  'user',
 
623
 
624
  ## License
625
 
626
+ This project is released under the MIT license, while InternLM2 is licensed under the Apache-2.0 license.
627
 
628
  ## Citation
629
 
 
872
  LMDeploy 的 `api_server` 使模型能够通过一个命令轻松打包成服务。提供的 RESTful API 与 OpenAI 的接口兼容。以下是服务启动的示例:
873
 
874
  ```shell
875
+ lmdeploy serve api_server OpenGVLab/InternVL2-8B --backend turbomind --server-port 23333 --chat-template chat_template.json
876
  ```
877
 
878
  为了使用OpenAI风格的API接口,您需要安装OpenAI:
 
889
  client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
890
  model_name = client.models.list().data[0].id
891
  response = client.chat.completions.create(
892
+ model=model_name,
893
  messages=[{
894
  'role':
895
  'user',