File size: 4,318 Bytes
9e9fcf6 c453339 9e9fcf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
language:
- en
library_name: transformers
license: apache-2.0
metrics:
- accuracy
tags:
- multimodal
pipeline_tag: video-text-to-text
model-index:
- name: InternVideo2.5
results:
- task:
type: multimodal
dataset:
name: MLVU
type: mlvu
metrics:
- type: accuracy
value: 72.8
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MVBench
type: mvbench
metrics:
- type: accuracy
value: 75.7
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Perception Test
type: percepTest
metrics:
- type: accuracy
value: 74.9
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: LongVideoBench
type: longvideobench
metrics:
- type: accuracy
value: 60.6
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: VideoMME (w/o sub)
type: videomme
metrics:
- type: accuracy
value: 65.1
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: LVBench
type: lvbench
metrics:
- type: accuracy
value: 46.4
name: accuracy
verified: true
---
# 📕InternVideo2.5⚡
<!-- [\[📰 Blog\]](https://internvideo.github.io/blog/2024-12-31-VideoChat-Flash) -->
[\[📂 GitHub\]](https://github.com/OpenGVLab/InternVideo/tree/main/InternVideo2.5)
[\[📜 Tech Report\]](https://arxiv.org/abs/2501.12386)
<!-- [\[🗨️ Chat Demo\]](https://huggingface.co/spaces/OpenGVLab/VideoChat-Flash) -->
InternVideo2.5 is a video multimodal large language model (MLLM, built upoon InternVL2.5) enhanced with **long and rich context (LRC) modeling**. It significantly improves upon existing MLLMs by enhancing their ability to perceive fine-grained details and capture long-form temporal structures. We achieve this through dense vision task annotations using direct preference optimization (TPO) and compact spatiotemporal representations via adaptive hierarchical token compression (HiCo).
## 📈 Performance
| Model | MVBench | LongVideoBench | VideoMME(w/o sub)|
| --- | --- | --- | --- |
|InternVideo2.5| 75.7 | 60.6 | 65.1|
## 🚀 How to use the model
First, you need to install [flash attention2](https://github.com/Dao-AILab/flash-attention) and some other modules. We provide a simple installation example below:
```
pip install transformers==4.40.1
pip install av
pip install imageio
pip install decord
pip install opencv-python
pip install flash-attn --no-build-isolation
```
Then you could use our model:
```python
from transformers import AutoModel, AutoTokenizer
# model setting
model_path = 'OpenGVLab/InternVideo2_5_Chat_8B'
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda()
image_processor = model.get_vision_tower().image_processor
# evaluation setting
max_num_frames = 512
generation_config = dict(
do_sample=False,
temperature=0.0,
max_new_tokens=1024,
top_p=0.1,
num_beams=1
)
video_path = "your_video.mp4"
# single-turn conversation
question1 = "Describe this video in detail."
output1, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question1, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)
print(output1)
# multi-turn conversation
question2 = "How many people appear in the video?"
output2, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question2, chat_history=chat_history, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)
print(output2)
```
## ✏️ Citation
```bibtex
@article{wang2025internvideo,
title={InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling},
author={Wang, Yi and Li, Xinhao and Yan, Ziang and He, Yinan and Yu, Jiashuo and Zeng, Xiangyu and Wang, Chenting and Ma, Changlian and Huang, Haian and Gao, Jianfei and Dou, Min and Chen, Kai and Wang, Wenhai and Qiao, Yu and Wang, Yali and Wang, Limin},
journal={arXiv preprint arXiv:2501.12386},
year={2025}
}
``` |