mihaimasala
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,730 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-nc-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
language:
|
4 |
+
- ro
|
5 |
+
base_model:
|
6 |
+
- OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09
|
7 |
+
datasets:
|
8 |
+
- OpenLLM-Ro/ro_dpo_helpsteer
|
9 |
+
model-index:
|
10 |
+
- name: OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2024-10-09
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: text-generation
|
14 |
+
dataset:
|
15 |
+
name: RoMT-Bench
|
16 |
+
type: RoMT-Bench
|
17 |
+
metrics:
|
18 |
+
- name: Score
|
19 |
+
type: Score
|
20 |
+
value: 6.21
|
21 |
+
- task:
|
22 |
+
type: text-generation
|
23 |
+
dataset:
|
24 |
+
name: RoCulturaBench
|
25 |
+
type: RoCulturaBench
|
26 |
+
metrics:
|
27 |
+
- name: Score
|
28 |
+
type: Score
|
29 |
+
value: 4.42
|
30 |
+
- task:
|
31 |
+
type: text-generation
|
32 |
+
dataset:
|
33 |
+
name: Romanian_Academic_Benchmarks
|
34 |
+
type: Romanian_Academic_Benchmarks
|
35 |
+
metrics:
|
36 |
+
- name: Average accuracy
|
37 |
+
type: accuracy
|
38 |
+
value: 52.73
|
39 |
+
- task:
|
40 |
+
type: text-generation
|
41 |
+
dataset:
|
42 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
43 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
44 |
+
metrics:
|
45 |
+
- name: Average accuracy
|
46 |
+
type: accuracy
|
47 |
+
value: 44.84
|
48 |
+
- task:
|
49 |
+
type: text-generation
|
50 |
+
dataset:
|
51 |
+
name: OpenLLM-Ro/ro_mmlu
|
52 |
+
type: OpenLLM-Ro/ro_mmlu
|
53 |
+
metrics:
|
54 |
+
- name: Average accuracy
|
55 |
+
type: accuracy
|
56 |
+
value: 55.06
|
57 |
+
- task:
|
58 |
+
type: text-generation
|
59 |
+
dataset:
|
60 |
+
name: OpenLLM-Ro/ro_winogrande
|
61 |
+
type: OpenLLM-Ro/ro_winogrande
|
62 |
+
metrics:
|
63 |
+
- name: Average accuracy
|
64 |
+
type: accuracy
|
65 |
+
value: 65.84
|
66 |
+
- task:
|
67 |
+
type: text-generation
|
68 |
+
dataset:
|
69 |
+
name: OpenLLM-Ro/ro_hellaswag
|
70 |
+
type: OpenLLM-Ro/ro_hellaswag
|
71 |
+
metrics:
|
72 |
+
- name: Average accuracy
|
73 |
+
type: accuracy
|
74 |
+
value: 58.67
|
75 |
+
- task:
|
76 |
+
type: text-generation
|
77 |
+
dataset:
|
78 |
+
name: OpenLLM-Ro/ro_gsm8k
|
79 |
+
type: OpenLLM-Ro/ro_gsm8k
|
80 |
+
metrics:
|
81 |
+
- name: Average accuracy
|
82 |
+
type: accuracy
|
83 |
+
value: 44.17
|
84 |
+
- task:
|
85 |
+
type: text-generation
|
86 |
+
dataset:
|
87 |
+
name: OpenLLM-Ro/ro_truthfulqa
|
88 |
+
type: OpenLLM-Ro/ro_truthfulqa
|
89 |
+
metrics:
|
90 |
+
- name: Average accuracy
|
91 |
+
type: accuracy
|
92 |
+
value: 47.81
|
93 |
+
- task:
|
94 |
+
type: text-generation
|
95 |
+
dataset:
|
96 |
+
name: LaRoSeDa_binary
|
97 |
+
type: LaRoSeDa_binary
|
98 |
+
metrics:
|
99 |
+
- name: Average macro-f1
|
100 |
+
type: macro-f1
|
101 |
+
value: 0.00
|
102 |
+
- task:
|
103 |
+
type: text-generation
|
104 |
+
dataset:
|
105 |
+
name: LaRoSeDa_multiclass
|
106 |
+
type: LaRoSeDa_multiclass
|
107 |
+
metrics:
|
108 |
+
- name: Average macro-f1
|
109 |
+
type: macro-f1
|
110 |
+
value: 0.00
|
111 |
+
- task:
|
112 |
+
type: text-generation
|
113 |
+
dataset:
|
114 |
+
name: LaRoSeDa_binary_finetuned
|
115 |
+
type: LaRoSeDa_binary_finetuned
|
116 |
+
metrics:
|
117 |
+
- name: Average macro-f1
|
118 |
+
type: macro-f1
|
119 |
+
value: 0.00
|
120 |
+
- task:
|
121 |
+
type: text-generation
|
122 |
+
dataset:
|
123 |
+
name: LaRoSeDa_multiclass_finetuned
|
124 |
+
type: LaRoSeDa_multiclass_finetuned
|
125 |
+
metrics:
|
126 |
+
- name: Average macro-f1
|
127 |
+
type: macro-f1
|
128 |
+
value: 0.00
|
129 |
+
- task:
|
130 |
+
type: text-generation
|
131 |
+
dataset:
|
132 |
+
name: WMT_EN-RO
|
133 |
+
type: WMT_EN-RO
|
134 |
+
metrics:
|
135 |
+
- name: Average bleu
|
136 |
+
type: bleu
|
137 |
+
value: 0.00
|
138 |
+
- task:
|
139 |
+
type: text-generation
|
140 |
+
dataset:
|
141 |
+
name: WMT_RO-EN
|
142 |
+
type: WMT_RO-EN
|
143 |
+
metrics:
|
144 |
+
- name: Average bleu
|
145 |
+
type: bleu
|
146 |
+
value: 0.00
|
147 |
+
- task:
|
148 |
+
type: text-generation
|
149 |
+
dataset:
|
150 |
+
name: WMT_EN-RO_finetuned
|
151 |
+
type: WMT_EN-RO_finetuned
|
152 |
+
metrics:
|
153 |
+
- name: Average bleu
|
154 |
+
type: bleu
|
155 |
+
value: 0.00
|
156 |
+
- task:
|
157 |
+
type: text-generation
|
158 |
+
dataset:
|
159 |
+
name: WMT_RO-EN_finetuned
|
160 |
+
type: WMT_RO-EN_finetuned
|
161 |
+
metrics:
|
162 |
+
- name: Average bleu
|
163 |
+
type: bleu
|
164 |
+
value: 0.00
|
165 |
+
- task:
|
166 |
+
type: text-generation
|
167 |
+
dataset:
|
168 |
+
name: XQuAD
|
169 |
+
type: XQuAD
|
170 |
+
metrics:
|
171 |
+
- name: Average exact_match
|
172 |
+
type: exact_match
|
173 |
+
value: 0.00
|
174 |
+
- task:
|
175 |
+
type: text-generation
|
176 |
+
dataset:
|
177 |
+
name: XQuAD
|
178 |
+
type: XQuAD
|
179 |
+
metrics:
|
180 |
+
- name: Average f1
|
181 |
+
type: f1
|
182 |
+
value: 0.00
|
183 |
+
- task:
|
184 |
+
type: text-generation
|
185 |
+
dataset:
|
186 |
+
name: XQuAD_finetuned
|
187 |
+
type: XQuAD_finetuned
|
188 |
+
metrics:
|
189 |
+
- name: Average exact_match
|
190 |
+
type: exact_match
|
191 |
+
value: 0.00
|
192 |
+
- task:
|
193 |
+
type: text-generation
|
194 |
+
dataset:
|
195 |
+
name: XQuAD_finetuned
|
196 |
+
type: XQuAD_finetuned
|
197 |
+
metrics:
|
198 |
+
- name: Average f1
|
199 |
+
type: f1
|
200 |
+
value: 0.00
|
201 |
+
- task:
|
202 |
+
type: text-generation
|
203 |
+
dataset:
|
204 |
+
name: STS
|
205 |
+
type: STS
|
206 |
+
metrics:
|
207 |
+
- name: Average spearman
|
208 |
+
type: spearman
|
209 |
+
value: 0.00
|
210 |
+
- task:
|
211 |
+
type: text-generation
|
212 |
+
dataset:
|
213 |
+
name: STS
|
214 |
+
type: STS
|
215 |
+
metrics:
|
216 |
+
- name: Average pearson
|
217 |
+
type: pearson
|
218 |
+
value: 0.00
|
219 |
+
- task:
|
220 |
+
type: text-generation
|
221 |
+
dataset:
|
222 |
+
name: STS_finetuned
|
223 |
+
type: STS_finetuned
|
224 |
+
metrics:
|
225 |
+
- name: Average spearman
|
226 |
+
type: spearman
|
227 |
+
value: 0.00
|
228 |
+
- task:
|
229 |
+
type: text-generation
|
230 |
+
dataset:
|
231 |
+
name: STS_finetuned
|
232 |
+
type: STS_finetuned
|
233 |
+
metrics:
|
234 |
+
- name: Average pearson
|
235 |
+
type: pearson
|
236 |
+
value: 0.00
|
237 |
+
- task:
|
238 |
+
type: text-generation
|
239 |
+
dataset:
|
240 |
+
name: RoMT-Bench
|
241 |
+
type: RoMT-Bench
|
242 |
+
metrics:
|
243 |
+
- name: First turn
|
244 |
+
type: Score
|
245 |
+
value: 6.74
|
246 |
+
- name: Second turn
|
247 |
+
type: Score
|
248 |
+
value: 5.69
|
249 |
+
- task:
|
250 |
+
type: text-generation
|
251 |
+
dataset:
|
252 |
+
name: OpenLLM-Ro/ro_arc_challenge
|
253 |
+
type: OpenLLM-Ro/ro_arc_challenge
|
254 |
+
metrics:
|
255 |
+
- name: 0-shot
|
256 |
+
type: accuracy
|
257 |
+
value: 41.82
|
258 |
+
- name: 1-shot
|
259 |
+
type: accuracy
|
260 |
+
value: 43.70
|
261 |
+
- name: 3-shot
|
262 |
+
type: accuracy
|
263 |
+
value: 45.33
|
264 |
+
- name: 5-shot
|
265 |
+
type: accuracy
|
266 |
+
value: 46.10
|
267 |
+
- name: 10-shot
|
268 |
+
type: accuracy
|
269 |
+
value: 45.76
|
270 |
+
- name: 25-shot
|
271 |
+
type: accuracy
|
272 |
+
value: 46.36
|
273 |
+
- task:
|
274 |
+
type: text-generation
|
275 |
+
dataset:
|
276 |
+
name: OpenLLM-Ro/ro_mmlu
|
277 |
+
type: OpenLLM-Ro/ro_mmlu
|
278 |
+
metrics:
|
279 |
+
- name: 0-shot
|
280 |
+
type: accuracy
|
281 |
+
value: 53.75
|
282 |
+
- name: 1-shot
|
283 |
+
type: accuracy
|
284 |
+
value: 54.94
|
285 |
+
- name: 3-shot
|
286 |
+
type: accuracy
|
287 |
+
value: 56.07
|
288 |
+
- name: 5-shot
|
289 |
+
type: accuracy
|
290 |
+
value: 55.47
|
291 |
+
- task:
|
292 |
+
type: text-generation
|
293 |
+
dataset:
|
294 |
+
name: OpenLLM-Ro/ro_winogrande
|
295 |
+
type: OpenLLM-Ro/ro_winogrande
|
296 |
+
metrics:
|
297 |
+
- name: 0-shot
|
298 |
+
type: accuracy
|
299 |
+
value: 64.40
|
300 |
+
- name: 1-shot
|
301 |
+
type: accuracy
|
302 |
+
value: 66.14
|
303 |
+
- name: 3-shot
|
304 |
+
type: accuracy
|
305 |
+
value: 65.75
|
306 |
+
- name: 5-shot
|
307 |
+
type: accuracy
|
308 |
+
value: 67.09
|
309 |
+
- task:
|
310 |
+
type: text-generation
|
311 |
+
dataset:
|
312 |
+
name: OpenLLM-Ro/ro_hellaswag
|
313 |
+
type: OpenLLM-Ro/ro_hellaswag
|
314 |
+
metrics:
|
315 |
+
- name: 0-shot
|
316 |
+
type: accuracy
|
317 |
+
value: 57.25
|
318 |
+
- name: 1-shot
|
319 |
+
type: accuracy
|
320 |
+
value: 58.00
|
321 |
+
- name: 3-shot
|
322 |
+
type: accuracy
|
323 |
+
value: 59.23
|
324 |
+
- name: 5-shot
|
325 |
+
type: accuracy
|
326 |
+
value: 59.30
|
327 |
+
- name: 10-shot
|
328 |
+
type: accuracy
|
329 |
+
value: 59.56
|
330 |
+
- task:
|
331 |
+
type: text-generation
|
332 |
+
dataset:
|
333 |
+
name: OpenLLM-Ro/ro_gsm8k
|
334 |
+
type: OpenLLM-Ro/ro_gsm8k
|
335 |
+
metrics:
|
336 |
+
- name: 0-shot
|
337 |
+
type: accuracy
|
338 |
+
value: 36.47
|
339 |
+
- name: 1-shot
|
340 |
+
type: accuracy
|
341 |
+
value: 45.94
|
342 |
+
- name: 3-shot
|
343 |
+
type: accuracy
|
344 |
+
value: 50.11
|
345 |
+
- task:
|
346 |
+
type: text-generation
|
347 |
+
dataset:
|
348 |
+
name: LaRoSeDa_binary
|
349 |
+
type: LaRoSeDa_binary
|
350 |
+
metrics:
|
351 |
+
- name: 0-shot
|
352 |
+
type: macro-f1
|
353 |
+
value: 0.00
|
354 |
+
- name: 1-shot
|
355 |
+
type: macro-f1
|
356 |
+
value: 0.00
|
357 |
+
- name: 3-shot
|
358 |
+
type: macro-f1
|
359 |
+
value: 0.00
|
360 |
+
- name: 5-shot
|
361 |
+
type: macro-f1
|
362 |
+
value: 0.00
|
363 |
+
- task:
|
364 |
+
type: text-generation
|
365 |
+
dataset:
|
366 |
+
name: LaRoSeDa_multiclass
|
367 |
+
type: LaRoSeDa_multiclass
|
368 |
+
metrics:
|
369 |
+
- name: 0-shot
|
370 |
+
type: macro-f1
|
371 |
+
value: 0.00
|
372 |
+
- name: 1-shot
|
373 |
+
type: macro-f1
|
374 |
+
value: 0.00
|
375 |
+
- name: 3-shot
|
376 |
+
type: macro-f1
|
377 |
+
value: 0.00
|
378 |
+
- name: 5-shot
|
379 |
+
type: macro-f1
|
380 |
+
value: 0.00
|
381 |
+
- task:
|
382 |
+
type: text-generation
|
383 |
+
dataset:
|
384 |
+
name: WMT_EN-RO
|
385 |
+
type: WMT_EN-RO
|
386 |
+
metrics:
|
387 |
+
- name: 0-shot
|
388 |
+
type: bleu
|
389 |
+
value: 0.00
|
390 |
+
- name: 1-shot
|
391 |
+
type: bleu
|
392 |
+
value: 0.00
|
393 |
+
- name: 3-shot
|
394 |
+
type: bleu
|
395 |
+
value: 0.00
|
396 |
+
- name: 5-shot
|
397 |
+
type: bleu
|
398 |
+
value: 0.00
|
399 |
+
- task:
|
400 |
+
type: text-generation
|
401 |
+
dataset:
|
402 |
+
name: WMT_RO-EN
|
403 |
+
type: WMT_RO-EN
|
404 |
+
metrics:
|
405 |
+
- name: 0-shot
|
406 |
+
type: bleu
|
407 |
+
value: 0.00
|
408 |
+
- name: 1-shot
|
409 |
+
type: bleu
|
410 |
+
value: 0.00
|
411 |
+
- name: 3-shot
|
412 |
+
type: bleu
|
413 |
+
value: 0.00
|
414 |
+
- name: 5-shot
|
415 |
+
type: bleu
|
416 |
+
value: 0.00
|
417 |
+
- task:
|
418 |
+
type: text-generation
|
419 |
+
dataset:
|
420 |
+
name: XQuAD_EM
|
421 |
+
type: XQuAD_EM
|
422 |
+
metrics:
|
423 |
+
- name: 0-shot
|
424 |
+
type: exact_match
|
425 |
+
value: 0.00
|
426 |
+
- name: 1-shot
|
427 |
+
type: exact_match
|
428 |
+
value: 0.00
|
429 |
+
- name: 3-shot
|
430 |
+
type: exact_match
|
431 |
+
value: 0.00
|
432 |
+
- name: 5-shot
|
433 |
+
type: exact_match
|
434 |
+
value: 0.00
|
435 |
+
- task:
|
436 |
+
type: text-generation
|
437 |
+
dataset:
|
438 |
+
name: XQuAD_F1
|
439 |
+
type: XQuAD_F1
|
440 |
+
metrics:
|
441 |
+
- name: 0-shot
|
442 |
+
type: f1
|
443 |
+
value: 0.00
|
444 |
+
- name: 1-shot
|
445 |
+
type: f1
|
446 |
+
value: 0.00
|
447 |
+
- name: 3-shot
|
448 |
+
type: f1
|
449 |
+
value: 0.00
|
450 |
+
- name: 5-shot
|
451 |
+
type: f1
|
452 |
+
value: 0.00
|
453 |
+
- task:
|
454 |
+
type: text-generation
|
455 |
+
dataset:
|
456 |
+
name: STS
|
457 |
+
type: STS
|
458 |
+
metrics:
|
459 |
+
- name: 0-shot
|
460 |
+
type: spearman
|
461 |
+
value: 0.00
|
462 |
+
- name: 1-shot
|
463 |
+
type: spearman
|
464 |
+
value: 0.00
|
465 |
+
- name: 3-shot
|
466 |
+
type: spearman
|
467 |
+
value: 0.00
|
468 |
+
- task:
|
469 |
+
type: text-generation
|
470 |
+
dataset:
|
471 |
+
name: STS
|
472 |
+
type: STS
|
473 |
+
metrics:
|
474 |
+
- name: 0-shot
|
475 |
+
type: pearson
|
476 |
+
value: 0.00
|
477 |
+
- name: 1-shot
|
478 |
+
type: pearson
|
479 |
+
value: 0.00
|
480 |
+
- name: 3-shot
|
481 |
+
type: pearson
|
482 |
+
value: 0.00
|
483 |
+
|
484 |
+
---
|
485 |
+
|
486 |
+
# Model Card for Model ID
|
487 |
+
|
488 |
+
*Built with Meta Llama 3.1*
|
489 |
+
|
490 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
491 |
+
|
492 |
+
RoLlama3.1 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 8B model**. Links to other models can be found at the bottom of this page.
|
493 |
+
|
494 |
+
|
495 |
+
## Model Details
|
496 |
+
|
497 |
+
### Model Description
|
498 |
+
|
499 |
+
<!-- Provide a longer summary of what this model is. -->
|
500 |
+
OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
|
501 |
+
|
502 |
+
|
503 |
+
- **Developed by:** OpenLLM-Ro
|
504 |
+
<!-- - **Funded by [optional]:** [More Information Needed] -->
|
505 |
+
<!-- - **Shared by [optional]:** [More Information Needed] -->
|
506 |
+
<!-- - **Model type:** [More Information Needed] -->
|
507 |
+
- **Language(s):** Romanian
|
508 |
+
- **License:** cc-by-nc-4.0
|
509 |
+
- **Finetuned from model:** [RoLlama3.1-8b-Instruct-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09)
|
510 |
+
- **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer)
|
511 |
+
|
512 |
+
|
513 |
+
### Model Sources
|
514 |
+
|
515 |
+
<!-- Provide the basic links for the model. -->
|
516 |
+
|
517 |
+
- **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
|
518 |
+
- **Paper:** https://arxiv.org/abs/2406.18266
|
519 |
+
|
520 |
+
## Intended Use
|
521 |
+
|
522 |
+
### Intended Use Cases
|
523 |
+
|
524 |
+
RoLlama3.1 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
|
525 |
+
|
526 |
+
### Out-of-Scope Use
|
527 |
+
|
528 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
529 |
+
|
530 |
+
Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
|
531 |
+
|
532 |
+
|
533 |
+
|
534 |
+
## How to Get Started with the Model
|
535 |
+
|
536 |
+
Use the code below to get started with the model.
|
537 |
+
|
538 |
+
```python
|
539 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
540 |
+
|
541 |
+
tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2024-10-09")
|
542 |
+
model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2024-10-09")
|
543 |
+
|
544 |
+
instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
|
545 |
+
chat = [
|
546 |
+
{"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
|
547 |
+
{"role": "user", "content": instruction},
|
548 |
+
]
|
549 |
+
prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
|
550 |
+
|
551 |
+
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
552 |
+
outputs = model.generate(input_ids=inputs, max_new_tokens=128)
|
553 |
+
print(tokenizer.decode(outputs[0]))
|
554 |
+
```
|
555 |
+
|
556 |
+
## Academic Benchmarks
|
557 |
+
|
558 |
+
<table>
|
559 |
+
<tbody>
|
560 |
+
<tr>
|
561 |
+
<td><strong>Model</strong></td>
|
562 |
+
<td><strong><center>Average</center></strong></td>
|
563 |
+
<td><strong><center>ARC</center></strong></td>
|
564 |
+
<td><strong><center>MMLU</center></strong></td>
|
565 |
+
<td><strong><center>Winogrande</center></strong></td>
|
566 |
+
<td><strong><center>Hellaswag</center></strong></td>
|
567 |
+
<td><strong><center>GSM8k</center></strong></td>
|
568 |
+
<td><strong><center>TruthfulQA</center></strong></td>
|
569 |
+
</tr>
|
570 |
+
<tr>
|
571 |
+
<td>Llama-3.1-8B-Instruct</td><td><center>49.87</center></td><td><center>42.86</center></td><td><center>53.73</center></td><td><center>59.71</center></td><td><center>56.82</center></td><td><center>35.56</center></td><td><center><strong>50.54</strong></center></td>
|
572 |
+
</tr>
|
573 |
+
<tr>
|
574 |
+
<td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center><strong>53.03</strong></center></td><td><center><strong>47.69</strong></center></td><td><center>54.57</center></td><td><center><strong>65.84</strong></center></td><td><center><strong>59.94</strong></center></td><td><center><strong>44.30</strong></center></td><td><center>45.82</center></td>
|
575 |
+
</tr>
|
576 |
+
<tr>
|
577 |
+
<td><em>RoLlama3.1-8b-Instruct-DPO-2024-10-09</em></td><td><center><em>52.73</em></center></td><td><center><em>44.84</em></center></td><td><center><em><strong>55.06</strong></em></center></td><td><center><em><strong>65.84</strong></em></center></td><td><center><em>58.67</em></center></td><td><center><em>44.17</em></center></td><td><center><em>47.81</em></center></td>
|
578 |
+
</tr>
|
579 |
+
</tbody>
|
580 |
+
</table>
|
581 |
+
|
582 |
+
|
583 |
+
## Downstream tasks
|
584 |
+
|
585 |
+
<table>
|
586 |
+
<tbody>
|
587 |
+
<tr>
|
588 |
+
<td></td>
|
589 |
+
<td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
|
590 |
+
<td colspan="4"><center><strong>WMT</strong></center></td>
|
591 |
+
</tr>
|
592 |
+
<tr>
|
593 |
+
<td></td>
|
594 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
595 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
596 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
597 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
598 |
+
</tr>
|
599 |
+
<tr>
|
600 |
+
<td><strong>Model</strong></td>
|
601 |
+
<td><center><strong>Binary<br>(Macro F1)</strong></center></td>
|
602 |
+
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
|
603 |
+
<td><center><strong>Binary<br>(Macro F1)</strong></center></td>
|
604 |
+
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
|
605 |
+
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
|
606 |
+
<td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
|
607 |
+
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
|
608 |
+
<td><center><strong>RO-EN<br>(Bleu)</strong></center>
|
609 |
+
</tr>
|
610 |
+
<tr>
|
611 |
+
<td>Llama-3.1-8B-Instruct</td><td><center><strong>95.74</strong></center></td><td><center>59.49</center></td><td><center><strong>98.57</strong></center></td><td><center>82.41</center></td><td><center>19.01</center></td><td><center><strong>27.77</strong></center></td><td><center><strong>29.02</strong></center></td><td><center>39.80</center></td>
|
612 |
+
</tr>
|
613 |
+
<tr>
|
614 |
+
<td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>94.56</center></td><td><center><strong>60.10</strong></center></td><td><center>95.12</center></td><td><center><strong>87.53</strong></center></td><td><center><strong>21.88</strong></center></td><td><center>23.99</center></td><td><center>28.27</center></td><td><center><strong>40.44</strong></center></td>
|
615 |
+
</tr>
|
616 |
+
<tr>
|
617 |
+
<td><em>RoLlama3.1-8b-Instruct-DPO-2024-10-09</em></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
|
618 |
+
</tr>
|
619 |
+
</tbody>
|
620 |
+
</table>
|
621 |
+
|
622 |
+
|
623 |
+
<table>
|
624 |
+
<tbody>
|
625 |
+
<tr>
|
626 |
+
<td></td>
|
627 |
+
<td colspan="4"><center><strong>XQuAD</strong></center></td>
|
628 |
+
<td colspan="4"><center><strong>STS</strong></center></td>
|
629 |
+
</tr>
|
630 |
+
<tr>
|
631 |
+
<td></td>
|
632 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
633 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
634 |
+
<td colspan="2"><center><strong>Few-shot</strong></center></td>
|
635 |
+
<td colspan="2"><center><strong>Finetuned</strong></center></td>
|
636 |
+
</tr>
|
637 |
+
<tr>
|
638 |
+
<td><strong>Model</strong></td>
|
639 |
+
<td><center><strong>(EM)</strong></center></td>
|
640 |
+
<td><center><strong>(F1)</strong></center></td>
|
641 |
+
<td><center><strong>(EM)</strong></center></td>
|
642 |
+
<td><center><strong>(F1)</strong></center></td>
|
643 |
+
<td><center><strong>(Spearman)</strong></center></td>
|
644 |
+
<td><center><strong>(Pearson)</strong></center></td>
|
645 |
+
<td><center><strong>(Spearman)</strong></center></td>
|
646 |
+
<td><center><strong>(Pearson)</strong></center></td>
|
647 |
+
</tr>
|
648 |
+
<tr>
|
649 |
+
<td>Llama-3.1-8B-Instruct</td><td><center><strong>44.96</strong></center></td><td><center><strong>64.45</strong></center></td><td><center><strong>69.50</strong></center></td><td><center><strong>84.31</strong></center></td><td><center>72.11</center></td><td><center>71.64</center></td><td><center>84.59</center></td><td><center>84.96</center></td>
|
650 |
+
</tr>
|
651 |
+
<tr>
|
652 |
+
<td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>13.59</center></td><td><center>23.56</center></td><td><center>49.41</center></td><td><center>62.93</center></td><td><center><strong>75.89</strong></center></td><td><center><strong>76.00</strong></center></td><td><center><strong>86.86</strong></center></td><td><center><strong>87.05</strong></center></td>
|
653 |
+
</tr>
|
654 |
+
<tr>
|
655 |
+
<td><em>RoLlama3.1-8b-Instruct-DPO-2024-10-09</em></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
|
656 |
+
</tr>
|
657 |
+
</tbody>
|
658 |
+
</table>
|
659 |
+
|
660 |
+
|
661 |
+
## MT-Bench
|
662 |
+
|
663 |
+
<table>
|
664 |
+
<tbody>
|
665 |
+
<tr>
|
666 |
+
<td><strong>Model</strong></td>
|
667 |
+
<td><strong><center>Average</center></strong></td>
|
668 |
+
<td><strong><center>1st turn</center></strong></td>
|
669 |
+
<td><strong><center>2nd turn</center></strong></td>
|
670 |
+
<td><strong><center>Answers in Ro</center></strong></td>
|
671 |
+
</tr>
|
672 |
+
<tr>
|
673 |
+
<td>Llama-3.1-8B-Instruct</td><td><center>5.69</center></td><td><center>5.85</center></td><td><center>5.53</center></td><td><center><strong>160/160</strong></center></td>
|
674 |
+
</tr>
|
675 |
+
<tr>
|
676 |
+
<td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>5.42</center></td><td><center>5.95</center></td><td><center>4.89</center></td><td><center><strong>160/160</strong></center></td>
|
677 |
+
</tr>
|
678 |
+
<tr>
|
679 |
+
<td><em>RoLlama3.1-8b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>6.21</strong></em></center></td><td><center><em><strong>6.74</strong></em></center></td><td><center><em><strong>5.69</strong></em></center></td><td><center><em><strong>160/160</strong></em></center></td>
|
680 |
+
</tr>
|
681 |
+
</tbody>
|
682 |
+
</table>
|
683 |
+
|
684 |
+
|
685 |
+
## RoCulturaBench
|
686 |
+
|
687 |
+
<table>
|
688 |
+
<tbody>
|
689 |
+
<tr>
|
690 |
+
<td><strong>Model</strong></td>
|
691 |
+
<td><strong><center>Average</center></strong></td>
|
692 |
+
<td><strong><center>Answers in Ro</center></strong></td>
|
693 |
+
</tr>
|
694 |
+
<tr>
|
695 |
+
<td>Llama-3.1-8B-Instruct</td><td><center>3.54</center></td><td><center><strong>100/100</strong></center></td>
|
696 |
+
</tr>
|
697 |
+
<tr>
|
698 |
+
<td>RoLlama3.1-8b-Instruct-2024-10-09</td><td><center>3.55</center></td><td><center><strong>100/100</strong></center></td>
|
699 |
+
</tr>
|
700 |
+
<tr>
|
701 |
+
<td><em>RoLlama3.1-8b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>4.42</strong></em></center></td><td><center><em><strong>100/100</strong></em></center></td>
|
702 |
+
</tr>
|
703 |
+
</tbody>
|
704 |
+
</table>
|
705 |
+
|
706 |
+
|
707 |
+
## RoLlama3.1 Model Family
|
708 |
+
|
709 |
+
| Model | Link |
|
710 |
+
|--------------------|:--------:|
|
711 |
+
|RoLlama3.1-8b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09) |
|
712 |
+
|*RoLlama3.1-8b-Instruct-DPO-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2024-10-09) |
|
713 |
+
|
714 |
+
|
715 |
+
## Citation
|
716 |
+
|
717 |
+
```
|
718 |
+
@misc{masala2024vorbecstiromanecsterecipetrain,
|
719 |
+
title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
|
720 |
+
author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
|
721 |
+
year={2024},
|
722 |
+
eprint={2406.18266},
|
723 |
+
archivePrefix={arXiv},
|
724 |
+
primaryClass={cs.CL},
|
725 |
+
url={https://arxiv.org/abs/2406.18266},
|
726 |
+
}
|
727 |
+
```
|
728 |
+
<!-- **APA:**
|
729 |
+
|
730 |
+
[More Information Needed] -->
|