--- license: apache-2.0 dataset: sft tags: - finetuned - multimodal inference: false --- These are weights for a version of `checkpoints/stage2/llava-moleculestm-vicuna-7b-v1.5-pretrain_rxn_nc` finetuned for multimodal applications. ### Modalities * Molecule2DModality (use `` in text and provide `molecules` ### Usage GitHub: https://github.com/IDEA-XL/PRESTO (includes training scripts and basic inference server) ### Dataset sft (765299 examples) ### Training Device(s) ``` name, pci.bus_id, vbios_version A100-SXM4-40GB, 00000000:07:00.0, 92.00.45.00.03 A100-SXM4-40GB, 00000000:0F:00.0, 92.00.45.00.03 A100-SXM4-40GB, 00000000:47:00.0, 92.00.45.00.03 A100-SXM4-40GB, 00000000:4E:00.0, 92.00.45.00.03 A100-SXM4-40GB, 00000000:87:00.0, 92.00.45.00.03 A100-SXM4-40GB, 00000000:90:00.0, 92.00.45.00.03 A100-SXM4-40GB, 00000000:B7:00.0, 92.00.45.00.03 A100-SXM4-40GB, 00000000:BD:00.0, 92.00.45.00.03 ``` ### Model ``` LlamaLMMForCausalLM.model = LlamaLMMForCausalLM( (model): LlamaLMMModel( (embed_tokens): Embedding(32000, 4096, padding_idx=0) (layers): ModuleList( (0-31): 32 x LlamaDecoderLayer( (self_attn): LlamaSdpaAttention( (q_proj): Linear(in_features=4096, out_features=4096, bias=False) (k_proj): Linear(in_features=4096, out_features=4096, bias=False) (v_proj): Linear(in_features=4096, out_features=4096, bias=False) (o_proj): Linear(in_features=4096, out_features=4096, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=4096, out_features=11008, bias=False) (up_proj): Linear(in_features=4096, out_features=11008, bias=False) (down_proj): Linear(in_features=11008, out_features=4096, bias=False) (act_fn): SiLU() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() (molecule_2d_lmm_projector): _MLPVectorProjector( (mlp): Sequential( (0): Linear(in_features=300, out_features=4096, bias=True) (1): GELU(approximate='none') (2): Linear(in_features=4096, out_features=4096, bias=True) ) ) ) (lm_head): Linear(in_features=4096, out_features=32000, bias=False) ) ```