OpenNLPLab commited on
Commit
3b65586
·
1 Parent(s): c5d3093

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +188 -0
README.md CHANGED
@@ -1,3 +1,191 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - HGRN
8
+ - Recurrent Neural Network
9
  ---
10
+
11
+ - [HGRN](#hgrn)
12
+ - [Overall Architecture](#overall-architecture)
13
+ - [Experiments](#experiments)
14
+ - [Environment Preparation](#environment-preparation)
15
+ - [Env1](#env1)
16
+ - [Env2](#env2)
17
+ - [Autoregressive language model](#autoregressive-language-model)
18
+ - [1) Preprocess the data](#1-preprocess-the-data)
19
+ - [2) Train the autoregressive language model](#2-train-the-autoregressive-language-model)
20
+ - [Image modeling](#image-modeling)
21
+ - [LRA](#lra)
22
+ - [1) Preparation](#1-preparation)
23
+ - [2) Training](#2-training)
24
+ - [Standalone code](#standalone-code)
25
+
26
+
27
+ ## Overall Architecture
28
+
29
+ The overall network architecture is as follows:
30
+
31
+ <div align="center"> <img src="./hgrn.png" width = "100%" height = "100%" alt="network" align=center /></div>
32
+
33
+
34
+ ## Experiments
35
+
36
+ ### Environment Preparation
37
+
38
+ Our experiment uses two conda environments, where Autoregressive language modeling, needs to configure the environment according to the Env1 part, and LRA needs to configure the environment according to the Env2 part.
39
+
40
+ #### Env1
41
+
42
+ First build the conda environment based on the yaml file:
43
+
44
+ ```
45
+ conda env create --file env1.yaml
46
+ ```
47
+
48
+ If you meet an error when installing torch, just remove torch and torchvision in the yaml file, rerun the above command, and then run the below commands:
49
+
50
+ ```
51
+ conda activate hgrn
52
+ wget https://download.pytorch.org/whl/cu111/torch-1.8.1%2Bcu111-cp36-cp36m-linux_x86_64.whl
53
+ pip install torch-1.8.1+cu111-cp36-cp36m-linux_x86_64.whl
54
+ pip install -r requirements_hgrn.txt
55
+ ```
56
+
57
+ Then, install `hgru-pytorch`:
58
+ ```
59
+ conda activate hgrn
60
+ cd hgru-pytorch
61
+ pip install .
62
+ ```
63
+
64
+ Finally, install our version of fairseq:
65
+
66
+ ```
67
+ cd fairseq
68
+ pip install --editable ./
69
+ ```
70
+
71
+
72
+
73
+ #### Env2
74
+
75
+ Build the conda environment based on the yaml file:
76
+
77
+ ```
78
+ conda env create --file env2.yaml
79
+ ```
80
+
81
+ If you encounter difficulties in setting up the environment, you can install the conda environment first, and then use the following command to install the pip packages:
82
+ ```
83
+ pip install torch==1.10.0+cu111 torchvision==0.11.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html
84
+ pip install -r requirements_lra.txt
85
+ ```
86
+
87
+ Finally, install `hgru-pytorch`:
88
+ ```
89
+ conda activate lra
90
+ cd hgru-pytorch
91
+ pip install .
92
+ ```
93
+
94
+
95
+ ### Autoregressive language model
96
+
97
+ #### 1) Preprocess the data
98
+
99
+ First download the [WikiText-103 dataset](https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/):
100
+
101
+ ```
102
+ wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip
103
+ unzip wikitext-103-raw-v1.zip
104
+ ```
105
+
106
+ Next, encode it with the GPT-2 BPE:
107
+
108
+ ```
109
+ mkdir -p gpt2_bpe
110
+ wget -O gpt2_bpe/encoder.json https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json
111
+ wget -O gpt2_bpe/vocab.bpe https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe
112
+ for SPLIT in train valid test; do \
113
+ python -m examples.roberta.multiprocessing_bpe_encoder \
114
+ --encoder-json gpt2_bpe/encoder.json \
115
+ --vocab-bpe gpt2_bpe/vocab.bpe \
116
+ --inputs wikitext-103-raw/wiki.${SPLIT}.raw \
117
+ --outputs wikitext-103-raw/wiki.${SPLIT}.bpe \
118
+ --keep-empty \
119
+ --workers 60; \
120
+ done
121
+ ```
122
+
123
+ Finally, preprocess/binarize the data using the GPT-2 fairseq dictionary:
124
+
125
+ ```
126
+ wget -O gpt2_bpe/dict.txt https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt
127
+ fairseq-preprocess \
128
+ --only-source \
129
+ --srcdict gpt2_bpe/dict.txt \
130
+ --trainpref wikitext-103-raw/wiki.train.bpe \
131
+ --validpref wikitext-103-raw/wiki.valid.bpe \
132
+ --testpref wikitext-103-raw/wiki.test.bpe \
133
+ --destdir data-bin/wikitext-103 \
134
+ --workers 60
135
+ ```
136
+
137
+ This step comes from [fairseq](https://github.com/facebookresearch/fairseq/blob/main/examples/roberta/README.pretraining.md).
138
+
139
+
140
+
141
+
142
+ #### 2) Train the autoregressive language model
143
+
144
+ Use the following command to train language model:
145
+
146
+ ```
147
+ bash script_alm.sh
148
+ ```
149
+
150
+ You should change data_dir to preprocessed data.
151
+
152
+
153
+
154
+ ### Image modeling
155
+
156
+ ```
157
+ bash script_im.sh
158
+ ```
159
+
160
+
161
+ ### LRA
162
+
163
+ #### 1) Preparation
164
+
165
+ Download the codebase:
166
+
167
+ ```
168
+ git clone https://github.com/OpenNLPLab/lra.git
169
+ ```
170
+
171
+ Download the data:
172
+
173
+ ```
174
+ wget https://storage.googleapis.com/long-range-arena/lra_release.gz
175
+ mv lra_release.gz lra_release.tar.gz
176
+ tar -xvf lra_release.tar.gz
177
+ ```
178
+
179
+
180
+ #### 2) Training
181
+
182
+ Use the following script to run the experiments, you should change `PREFIX` to your lra path, change `tasks` to a specific task:
183
+
184
+ ```
185
+ python script_lra.py
186
+ ```
187
+
188
+
189
+
190
+ ## Standalone code
191
+ See [hgru-pytorch](https://github.com/Doraemonzzz/hgru-pytorch).