|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Transnormer model.""" |
|
import math |
|
import os |
|
from typing import List, Optional, Tuple, Union |
|
|
|
from einops import rearrange |
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
SequenceClassifierOutputWithPast, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
|
|
from .configuration_transnormer import TransnormerConfig |
|
from .norm import SimpleRMSNorm as SimpleRMSNorm_torch |
|
from .srmsnorm_triton import SimpleRMSNorm as SimpleRMSNorm_triton |
|
from .utils import ( |
|
get_activation_fn, |
|
get_norm_fn, |
|
logging_info, |
|
print_module, |
|
print_params, |
|
) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "TransnormerConfig" |
|
|
|
use_triton = eval(os.environ.get("use_triton", default="True")) |
|
debug = eval(os.environ.get("debug", default="False")) |
|
|
|
if use_triton: |
|
try: |
|
from .lightning_attention import lightning_attention |
|
|
|
has_lightning_attention = True |
|
except (ImportError, ModuleNotFoundError): |
|
has_lightning_attention = False |
|
else: |
|
has_lightning_attention = False |
|
|
|
if debug: |
|
logger.info(f"Use triton: {use_triton}") |
|
logger.info(f"Use lightning attention: {has_lightning_attention}") |
|
logger.info(f"Debug mode: {debug}, {type(debug)}") |
|
|
|
if not has_lightning_attention: |
|
|
|
def linear_attention(q, k, v, attn_mask): |
|
energy = torch.einsum("... n d, ... m d -> ... n m", q, k) |
|
energy = energy * attn_mask |
|
output = torch.einsum("... n m, ... m d -> ... n d", energy, v) |
|
|
|
return output |
|
|
|
|
|
|
|
|
|
class Lrpe(nn.Module): |
|
def __init__( |
|
self, |
|
num_heads=8, |
|
embed_dim=64, |
|
): |
|
super().__init__() |
|
d = num_heads * embed_dim |
|
|
|
self.index = torch.empty(0) |
|
self.theta = nn.Parameter( |
|
10000 ** (-2 / d * torch.arange(d)).reshape(num_heads, 1, -1) |
|
) |
|
|
|
def extra_repr(self): |
|
return print_module(self) |
|
|
|
def forward(self, x, offset=0): |
|
|
|
|
|
n = x.shape[-2] |
|
if self.index.shape[0] < n: |
|
self.index = torch.arange(n).reshape(1, -1, 1).to(x) |
|
index = self.index[:, :n] + offset |
|
theta = self.theta * index |
|
x = torch.concat([x * torch.cos(theta), x * torch.sin(theta)], dim=-1) |
|
|
|
return x |
|
|
|
|
|
class GLU(nn.Module): |
|
def __init__(self, d1, d2, bias=False): |
|
super().__init__() |
|
if debug: |
|
|
|
params = locals() |
|
|
|
print_params(**params) |
|
|
|
self.l1 = nn.Linear(d1, d2, bias=bias) |
|
self.l2 = nn.Linear(d1, d2, bias=bias) |
|
self.l3 = nn.Linear(d2, d1, bias=bias) |
|
|
|
def forward(self, x): |
|
o1 = self.l1(x) |
|
o2 = self.l2(x) |
|
output = o1 * o2 |
|
output = self.l3(output) |
|
|
|
return output |
|
|
|
|
|
class NormLinearAttention(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim, |
|
hidden_dim, |
|
num_heads, |
|
linear_act_fun="silu", |
|
norm_type="simplermsnorm", |
|
linear_use_lrpe=False, |
|
bias=False, |
|
): |
|
super().__init__() |
|
if debug: |
|
|
|
params = locals() |
|
|
|
print_params(**params) |
|
|
|
self.out_proj = nn.Linear(hidden_dim, embed_dim, bias=bias) |
|
self.act = get_activation_fn(linear_act_fun) |
|
self.num_heads = num_heads |
|
self.embed_dim = embed_dim |
|
self.head_dim = self.embed_dim // self.num_heads |
|
self.norm = get_norm_fn(norm_type)(hidden_dim) |
|
|
|
self.linear_use_lrpe = linear_use_lrpe |
|
if self.linear_use_lrpe: |
|
self.lrpe = Lrpe( |
|
num_heads=self.num_heads, |
|
embed_dim=self.head_dim, |
|
) |
|
|
|
self.qkvu_proj = nn.Linear(embed_dim, 4 * hidden_dim, bias=bias) |
|
|
|
|
|
self.offset = 0 |
|
|
|
def forward( |
|
self, |
|
x, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
attn_padding_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
use_cache: bool = False, |
|
slope_rate: Optional[torch.Tensor] = None, |
|
): |
|
do_eval = eval(os.environ.get("do_eval", default="False")) |
|
if (not self.training) and (not do_eval): |
|
return self.inference( |
|
x, |
|
attn_mask, |
|
attn_padding_mask, |
|
output_attentions, |
|
past_key_value, |
|
use_cache, |
|
slope_rate, |
|
) |
|
|
|
n = x.shape[-2] |
|
|
|
q, k, v, u = self.qkvu_proj(x).chunk(4, dim=-1) |
|
|
|
q, k, v = map( |
|
lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads), [q, k, v] |
|
) |
|
|
|
q = self.act(q) |
|
k = self.act(k) |
|
|
|
q_offset = 0 |
|
|
|
if past_key_value is not None: |
|
|
|
k = torch.cat([past_key_value[0], k], dim=-2) |
|
v = torch.cat([past_key_value[1], v], dim=-2) |
|
q_offset = past_key_value[0].shape[-2] |
|
|
|
past_key_value = (k, v) if use_cache else None |
|
|
|
|
|
if self.linear_use_lrpe: |
|
q = self.lrpe(q, offset=q_offset) |
|
k = self.lrpe(k) |
|
|
|
if attn_mask == None: |
|
attn_mask = (torch.tril(torch.ones(n, n))).to(q) |
|
|
|
if attn_padding_mask is not None: |
|
v = v.masked_fill( |
|
(1 - attn_padding_mask).unsqueeze(1).unsqueeze(-1).to(torch.bool), 0 |
|
) |
|
|
|
if not has_lightning_attention: |
|
if slope_rate != None: |
|
attn_mask = torch.exp(slope_rate * attn_mask) |
|
output = linear_attention(q, k, v, attn_mask) |
|
else: |
|
output = lightning_attention( |
|
q, k, v, True, slope_rate.squeeze(-1).squeeze(-1) |
|
) |
|
|
|
|
|
output = rearrange(output, "b h n d -> b n (h d)") |
|
|
|
output = self.norm(output) |
|
|
|
output = u * output |
|
|
|
output = self.out_proj(output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
else: |
|
attn_weights = torch.einsum("... n d, ... m d -> ... n m", q, k) |
|
|
|
return output, attn_weights, past_key_value |
|
|
|
def inference( |
|
self, |
|
x, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
attn_padding_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
use_cache: bool = False, |
|
slope_rate: Optional[torch.Tensor] = None, |
|
): |
|
|
|
n = x.shape[-2] |
|
|
|
q, k, v, u = self.qkvu_proj(x).chunk(4, dim=-1) |
|
|
|
q, k, v = map( |
|
lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads), [q, k, v] |
|
) |
|
|
|
q = self.act(q) |
|
k = self.act(k) |
|
|
|
|
|
if self.linear_use_lrpe: |
|
q = self.lrpe(q, offset=self.offset) |
|
k = self.lrpe(k) |
|
|
|
if past_key_value == None: |
|
self.offset = q.shape[-2] |
|
else: |
|
self.offset += 1 |
|
|
|
ratio = torch.exp(-slope_rate) |
|
|
|
|
|
if past_key_value == None: |
|
if attn_mask == None: |
|
attn_mask = (torch.tril(torch.ones(n, n))).to(q) |
|
if slope_rate != None: |
|
attn_mask = torch.exp(slope_rate * attn_mask) |
|
|
|
if attn_padding_mask is not None: |
|
attn_mask = attn_mask.masked_fill( |
|
(1 - attn_padding_mask).unsqueeze(1).unsqueeze(2).to(torch.bool), |
|
0, |
|
) |
|
energy = torch.einsum("... n d, ... m d -> ... n m", q, k) |
|
|
|
if attn_mask != None: |
|
energy = energy * attn_mask |
|
|
|
output = torch.einsum("... n m, ... m d -> ... n d", energy, v) |
|
|
|
eval_and_not_generate = eval( |
|
os.environ.get("eval_and_not_generate", default="False") |
|
) |
|
if eval_and_not_generate: |
|
kv = None |
|
else: |
|
|
|
kv_outproduct = torch.einsum("... n e, ... n d -> ... n e d", k, v) |
|
|
|
index = torch.arange(n - 1, -1, -1).reshape(1, 1, -1, 1, 1).to(x) |
|
|
|
decay = ratio.unsqueeze(0).unsqueeze(-1) ** index |
|
|
|
kv_outproduct_with_decay = kv_outproduct * decay |
|
kv = torch.sum(kv_outproduct_with_decay, dim=-3) |
|
else: |
|
kv = past_key_value |
|
|
|
output = [] |
|
for i in range(n): |
|
kv = ratio * kv + torch.einsum( |
|
"... n d, ... n e -> ... d e", |
|
k[:, :, i : i + 1], |
|
v[:, :, i : i + 1], |
|
) |
|
qkv = torch.einsum( |
|
"... n e, ... e d -> ... n d", q[:, :, i : i + 1], kv |
|
) |
|
output.append(qkv) |
|
output = torch.concat(output, dim=-2) |
|
|
|
|
|
output = rearrange(output, "b h n d -> b n (h d)") |
|
|
|
output = self.norm(output) |
|
|
|
output = u * output |
|
|
|
output = self.out_proj(output) |
|
|
|
attn_weights = None |
|
|
|
return output, attn_weights, kv |
|
|
|
|
|
class TransnormerDecoderLayer(nn.Module): |
|
def __init__(self, config: TransnormerConfig): |
|
super().__init__() |
|
self.embed_dim = config.decoder_embed_dim |
|
|
|
norm_type = config.norm_type |
|
if debug: |
|
logging_info(f"Decoder Norm Type: {norm_type}") |
|
self.token_norm = get_norm_fn(norm_type)(self.embed_dim) |
|
self.channel_norm = get_norm_fn(norm_type)(self.embed_dim) |
|
|
|
|
|
self.token_mixer = self.build_token_mixer( |
|
self.embed_dim, |
|
config, |
|
) |
|
|
|
|
|
self.glu_dim = config.glu_dim |
|
if self.glu_dim == -1: |
|
self.glu_dim = self.embed_dim |
|
bias = config.bias |
|
self.channel_mixer = GLU(self.embed_dim, self.glu_dim, bias) |
|
|
|
def build_token_mixer(self, embed_dim, config): |
|
return NormLinearAttention( |
|
embed_dim=embed_dim, |
|
hidden_dim=config.hidden_dim, |
|
num_heads=config.decoder_attention_heads, |
|
linear_act_fun=config.linear_act_fun, |
|
norm_type=config.norm_type, |
|
linear_use_lrpe=config.linear_use_lrpe, |
|
bias=config.bias, |
|
) |
|
|
|
def residual_connection(self, x, residual): |
|
return residual + x |
|
|
|
def forward( |
|
self, |
|
x, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
attn_padding_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
slope_rate: Optional[torch.Tensor] = None, |
|
): |
|
residual = x |
|
x = self.token_norm(x) |
|
x, self_attn_weights, present_key_value = self.token_mixer( |
|
x=x, |
|
attn_mask=attn_mask, |
|
attn_padding_mask=attn_padding_mask, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
slope_rate=slope_rate, |
|
) |
|
x = self.residual_connection(x, residual) |
|
|
|
residual = x |
|
x = self.channel_norm(x) |
|
x = self.channel_mixer(x) |
|
x = self.residual_connection(x, residual) |
|
|
|
outputs = (x,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
TRANSNORMER_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`TransnormerConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
TRANSNORMER_START_DOCSTRING, |
|
) |
|
class TransnormerPreTrainedModel(PreTrainedModel): |
|
config_class = TransnormerConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["TransnormerDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
|
|
def _init_weights(self, module): |
|
std = self.config.init_std |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, TransnormerModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
TRANSNORMER_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attn_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attn_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
TRANSNORMER_START_DOCSTRING, |
|
) |
|
class TransnormerModel(TransnormerPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TransnormerDecoderLayer`] |
|
|
|
Args: |
|
config: TransnormerConfig |
|
""" |
|
|
|
def __init__(self, config: TransnormerConfig): |
|
super().__init__(config) |
|
|
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
self.gradient_checkpointing = False |
|
|
|
self._linear_attn_mask = torch.empty(0) |
|
|
|
self.linear_use_lrpe_list = config.linear_use_lrpe_list |
|
self.num_layers = config.decoder_layers |
|
|
|
self.slopes = self._build_slope_tensor(config.decoder_attention_heads) |
|
|
|
|
|
self.embed_tokens = nn.Embedding( |
|
config.vocab_size, config.decoder_embed_dim, self.padding_idx |
|
) |
|
self.layers = nn.ModuleList([]) |
|
for i in range(config.decoder_layers): |
|
if len(self.linear_use_lrpe_list) > 0: |
|
config.linear_use_lrpe = self.linear_use_lrpe_list[i] |
|
self.layers.append(TransnormerDecoderLayer(config)) |
|
|
|
self.final_norm = get_norm_fn(config.norm_type)(config.decoder_embed_dim) |
|
self.embed_dim = config.decoder_embed_dim |
|
self.embed_scale = ( |
|
1.0 if config.no_scale_embedding else math.sqrt(self.embed_dim) |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
@staticmethod |
|
def _build_slope_tensor(n_attention_heads: int): |
|
def get_slopes(n): |
|
def get_slopes_power_of_2(n): |
|
start = 2 ** (-(2 ** -(math.log2(n) - 3))) |
|
ratio = start |
|
return [start * ratio**i for i in range(n)] |
|
|
|
if math.log2(n).is_integer(): |
|
return get_slopes_power_of_2( |
|
n |
|
) |
|
else: |
|
closest_power_of_2 = 2 ** math.floor( |
|
math.log2(n) |
|
) |
|
return ( |
|
get_slopes_power_of_2(closest_power_of_2) |
|
+ get_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2] |
|
) |
|
|
|
|
|
slopes = torch.tensor(get_slopes(n_attention_heads)).reshape( |
|
n_attention_heads, 1, 1 |
|
) |
|
|
|
return slopes |
|
|
|
def extra_repr(self): |
|
return print_module(self) |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def _prepare_decoder_linear_attn_mask( |
|
self, input_shape, inputs_embeds, past_key_values_length |
|
): |
|
bsz, tgt_len = input_shape |
|
src_len = tgt_len + past_key_values_length |
|
|
|
def power_log(x): |
|
return 2 ** (math.ceil(math.log(x, 2))) |
|
|
|
n = power_log(max(tgt_len, src_len)) |
|
if self._linear_attn_mask.shape[-1] < n: |
|
|
|
def get_mask(n): |
|
mask = torch.triu(torch.zeros(n, n).float().fill_(float("-inf")), 1) |
|
|
|
|
|
for i in range(n): |
|
x = torch.arange(i + 1) |
|
y = x |
|
mask[i, : i + 1] = -torch.flip(y, [0]) |
|
|
|
return mask |
|
|
|
arr = [] |
|
for slope in self.slopes: |
|
arr.append(get_mask(n)) |
|
self._linear_attn_mask = torch.stack(arr, dim=0).to(inputs_embeds) |
|
|
|
linear_attn_mask = self._linear_attn_mask[:, -tgt_len:, -src_len:] |
|
num_heads = linear_attn_mask.shape[0] |
|
|
|
return linear_attn_mask[None, :, :, :].expand(bsz, num_heads, tgt_len, src_len) |
|
|
|
@add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attn_padding_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError( |
|
"You have to specify either decoder_input_ids or decoder_inputs_embeds" |
|
) |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[-2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if inputs_embeds is None: |
|
|
|
inputs_embeds = self.embed_scale * self.embed_tokens(input_ids) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
|
|
linear_attn_padding_mask = attn_padding_mask |
|
linear_attn_mask = self._prepare_decoder_linear_attn_mask( |
|
(batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
slope_rates = [self.slopes.to(input_ids.device) for _ in range(self.num_layers)] |
|
|
|
for idx, layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = ( |
|
past_key_values[idx] if past_key_values is not None else None |
|
) |
|
|
|
slope_rate = slope_rates[idx] |
|
slope_rate = slope_rate * (1 - idx / (self.num_layers - 1) + 1e-5) |
|
mask = linear_attn_mask |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
layer_outputs = layer( |
|
hidden_states, |
|
attn_mask=mask, |
|
attn_padding_mask=linear_attn_padding_mask, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
slope_rate=slope_rate, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
|
|
|
|
hidden_states = self.final_norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class TransnormerForCausalLM(TransnormerPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = TransnormerModel(config) |
|
if debug: |
|
logging_info(self.model) |
|
|
|
|
|
self.lm_head = nn.Linear( |
|
config.decoder_embed_dim, config.vocab_size, bias=False |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING) |
|
@replace_return_docstrings( |
|
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC |
|
) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, TransnormerForCausalLM |
|
|
|
>>> model = TransnormerForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you consciours? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." |
|
```""" |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attn_padding_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
**kwargs, |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple( |
|
past_state.index_select(0, beam_idx) for past_state in layer_past |
|
), |
|
) |
|
return reordered_past |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The LLaMa Model transformer with a sequence classification head on top (linear layer). |
|
|
|
[`TransnormerForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-2) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
TRANSNORMER_START_DOCSTRING, |
|
) |
|
class TransnormerForSequenceClassification(TransnormerPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = TransnormerModel(config) |
|
self.score = nn.Linear(config.decoder_embed_dim, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
transformer_outputs = self.model( |
|
input_ids, |
|
attn_padding_mask=attn_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
|
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError( |
|
"Cannot handle batch sizes > 1 if no padding token is defined." |
|
) |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
sequence_lengths = ( |
|
torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 |
|
).to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
pooled_logits = logits[ |
|
torch.arange(batch_size, device=logits.device), sequence_lengths |
|
] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and ( |
|
labels.dtype == torch.long or labels.dtype == torch.int |
|
): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
pooled_logits.view(-1, self.num_labels), labels.view(-1) |
|
) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|