File size: 3,836 Bytes
255a3b9
 
 
 
4d91d90
 
 
255a3b9
e7da494
547f7fe
e7da494
547f7fe
 
 
 
 
e7da494
40760e5
e7da494
 
 
40760e5
 
 
 
 
e7da494
40760e5
547f7fe
 
e7da494
 
ca613a4
4707eb8
547f7fe
ca613a4
547f7fe
e7da494
547f7fe
 
 
 
 
e7da494
 
547f7fe
 
 
 
5bbbd8d
547f7fe
 
 
 
ca613a4
547f7fe
ca613a4
 
 
547f7fe
 
e7da494
 
ca613a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d01e8d8
ca613a4
 
 
 
 
e7da494
 
 
547f7fe
e7da494
547f7fe
6ca96de
 
 
 
4d91d90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
license: apache-2.0
language:
- en
base_model:
- mistralai/Mixtral-8x7B-Instruct-v0.1
base_model_relation: quantized
---

# Mixtral-8x7b-Instruct-v0.1-int4-ov

 * Model creator: [Mistral AI](https://huggingface.co/mistralai)
 * Original model: [Mixtral 8X7B Instruct v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)

## Description

This is [Mixtral-8x7b-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf).

## Quantization Parameters

Weight compression was performed using `nncf.compress_weights` with the following parameters:

* mode: **INT4_SYM**
* group_size: **128**
* ratio: **0.8**

For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).

## Compatibility

The provided OpenVINO™ IR model is compatible with:

* OpenVINO version 2024.2.0 and higher
* Optimum Intel 1.17.0 and higher

## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)

1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:

```
pip install optimum[openvino]
```

2. Run model inference:

```
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM

model_id = "OpenVINO/mixtral-8x7b-instruct-v0.1-int4-ov"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id)


inputs = tokenizer("What is OpenVINO?", return_tensors="pt")

outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```

For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).

## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)

1. Install packages required for using OpenVINO GenAI.
```
pip install openvino-genai huggingface_hub
```

2. Download model from HuggingFace Hub
   
```
import huggingface_hub as hf_hub

model_id = "OpenVINO/mixtral-8x7b-instruct-v0.1-int4-ov"
model_path = "mixtral-8x7b-instruct-v0.1-int4-ov"

hf_hub.snapshot_download(model_id, local_dir=model_path)

```

3. Run model inference:

```
import openvino_genai as ov_genai

device = "CPU"
pipe = ov_genai.LLMPipeline(model_path, device)
print(pipe.generate("What is OpenVINO?", max_length=200))
```

More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)


## Limitations

Check the original model card for [limitations](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1#limitations).

## Legal information

The original model is distributed under [Apache 2.0](https://choosealicense.com/licenses/apache-2.0/) license. More details can be found in [original model card](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1).

## Disclaimer

Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.