''' * Software Name : spk_embeddings.py * SPDX-FileCopyrightText: Copyright (c) Orange SA * SPDX-License-Identifier: CC-BY-SA-3.0 * * This software is distributed under the Creative Commons Attribution Share Alike 3.0 Unported, * see the "LICENSE.txt" file for more details or https://huggingface.co/Orange/Speaker-wavLM-pro/blob/main/LICENSE.txt ''' import torch, torchaudio import torch.nn as nn from transformers.models.wavlm.modeling_wavlm import WavLMPreTrainedModel, WavLMModel class TopLayers(nn.Module): def __init__(self, embd_size = 250, top_interm_size = 512): super(TopLayers, self).__init__() self.affine1 = nn.Conv1d(in_channels=2048, out_channels=top_interm_size, kernel_size=1) self.batchnorm1 = nn.BatchNorm1d(num_features=top_interm_size, affine=False, eps=1e-03) self.affine2 = nn.Conv1d(in_channels=top_interm_size, out_channels=embd_size, kernel_size=1) self.batchnorm2 = nn.BatchNorm1d(num_features=embd_size, affine=False, eps=1e-03) self.activation = nn.ReLU(inplace=True) def forward(self, x): out = self.batchnorm1(self.activation(self.affine1(x))) out = self.batchnorm2(self.activation(self.affine2(out))) return nn.functional.normalize(out[:,:,0]) class EmbeddingsModel(WavLMPreTrainedModel): def __init__(self, config): super().__init__(config) self.wavlm = WavLMModel(config) self.top_layers = TopLayers(config.embd_size, config.top_interm_size) def forward(self, input_values): # MVN normalization x_norm = (input_values - input_values.mean(dim=1).unsqueeze(1)) / (input_values.std(dim=1).unsqueeze(1)) # wavlm fwd base_out = self.wavlm(input_values=x_norm, output_hidden_states=False).last_hidden_state # stats pooling v = base_out.var(dim=1).clamp(min=1e-10) x_stats = torch.cat((base_out.mean(dim=1),v.pow(0.5)),dim=1).unsqueeze(dim=2) # top layers fwd return self.top_layers(x_stats) def compute_embedding(fnm, model, max_size=320000): sig, sr = torchaudio.load(fnm) assert sr == 16000, "please convert your audio file to a sampling rate of 16 kHz" sig = sig.mean(dim=0) if sig.shape[0] > max_size: print(f"truncating long signal {fnm}") sig = sig[:max_size] embd = model(sig.unsqueeze(dim=0)) return embd.clone().detach()