|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""MAMBA2 configuration""" |
|
|
|
from typing import List |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class Mamba2Config(PretrainedConfig): |
|
""" |
|
This is the configuration class to store the configuration of a [`Mamba2Model`]. It is used to instantiate a MAMBA2 |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the MAMBA2 |
|
[state-spaces/mamba2-130m](https://huggingface.co/state-spaces/mamba2-130m) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50280): |
|
Vocabulary size of the MAMBA2 model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`Mamba2Model`]. |
|
pad_token_id (`int`, *optional*, defaults to 0): |
|
Padding token id. |
|
bos_token_id (`int`, *optional*, defaults to 0): |
|
The id of the beginning of sentence token in the vocabulary. |
|
eos_token_id (`int`, *optional*, defaults to 0): |
|
The id of the end of sentence token in the vocabulary. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the embeddings and hidden states. |
|
state_size (`int`, *optional*, defaults to 128): |
|
Shape of the state space latents. |
|
expand (`int`, *optional*, defaults to 2): |
|
Expanding factor used to determine the intermediate size. |
|
chunk_size (`int`, *optional*, defaults to 256): |
|
Block / Chunk size for the HW-efficient algorithm which parallelizes on intra- and inter-chunk calculations. |
|
mamba2_conv_kernel (`int`, *optional*, defaults to 4): |
|
Size of the convolution kernel in the mamba2 mixer. |
|
attention_conv_kernel (`int`, *optional*, defaults to 4): |
|
Size of the convolution kernel in the attention block. |
|
mlp_intermediate_size (`int`, *optional*, defaults to 0): |
|
Dimensionality of up-projections within the MLP blocks. If set to <=0, then MLP blocks are disabled. |
|
mlp_padding_size (`int`, *optional*, defaults to 128): |
|
Padding `mlp_intermediate_size` to a multiple of this. |
|
mamba2_head_dim (`int`, *optional*, defaults to 64): |
|
Multi-input SSM head dimension. |
|
attention_head_dim (`int`, *optional*, defaults to 128): |
|
Multi-head attention's head dimension. |
|
num_attention_heads (`int`, *optional*, defaults to 30): |
|
The number of heads in multi-head attention. |
|
num_key_value_heads (`int`, *optional*, defaults to 30): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`attention_num_key_value_heads=attention_num_heads`, the model will use Multi Head Attention (MHA), if |
|
`attention_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `attention_num_heads`. |
|
num_hidden_layers (`int`, *optional*, defaults to 24): |
|
Number of hidden layers in the model. |
|
attention_layers_idx (`List[int]`, *optional*, defaults to `[]`): |
|
The specific layers that exchange the mamba2 mixer block with the attention equivalent. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): |
|
The epsilon to use in the layer normalization layers. |
|
use_conv_bias (`bool`, *optional*, defaults to `True`): |
|
Whether or not to use bias in the convolution layer of the mixer block. |
|
use_mlp_bias (`bool`, *optional*, defaults to `False`): |
|
Whether or not to use a bias in the up- and downprojections of the MLP block. |
|
use_mamba2_bias (`bool`, *optional*, defaults to `False`): |
|
Whether or not to use bias in ["in_proj", "out_proj"] of the mamba2 mixer block. |
|
use_attention_qkv_bias (`bool`, *optional*, defaults to `False`): |
|
Whether or not to use bias in the qkv projection of the attention block. |
|
use_attention_out_bias (`bool`, *optional*, defaults to `False`): |
|
Whether or not to use bias in the out projection of the attention block. |
|
hidden_act (`str`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
emb_initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing the embedding weight matrix. |
|
conv_initializer_range (`float`, *optional*): |
|
The range for uniformly initializing the convolution weights. |
|
A_initializer_range (`List[int]`, *optional*, defaults to `[1, 16]`): |
|
The range for uniformly initializing the 1-SS(a) scalar. |
|
time_step_min (`float`, *optional*, defaults to 0.001): |
|
Minimum `time_step` used to bound `dt_proj.bias`. |
|
time_step_max (`float`, *optional*, defaults to 0.1): |
|
Maximum `time_step` used to bound `dt_proj.bias`. |
|
time_step_floor (`float`, *optional*, defaults to 0.0001): |
|
Minimum clamping value of the `dt_proj.bias` layer initialization. |
|
time_step_limit (`List[float]`, *optional*, defaults to `[0.0, inf]`): |
|
Clapping values for the dt weights. |
|
residual_in_fp32 (`bool`, *optional*, defaults to `True`): |
|
Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model |
|
rescale_prenorm_residual (`bool`, *optional*, defaults to `False`): |
|
Whether or not to rescale `out_proj` weights when initializing. |
|
rope_emb_dim (`int`, *optional*, defaults to 64): |
|
Embedding dimension of the RoPE embeddings. |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
rope_scaling (`Dict`, *optional*): |
|
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling |
|
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is |
|
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update |
|
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how |
|
these scaling strategies behave: |
|
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an |
|
experimental feature, subject to breaking API changes in future versions. |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. This is based on the context length the |
|
Mamba2 models have been trained on. Also necessary when using any sort of RoPE embeddings. |
|
tie_embedding_weights (`bool`, *optional*, defaults to `True`): |
|
Whether or not to tie the lm head to the input embeddings. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the cache should be used. |
|
classifier_dropout (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the classification head in [`Mamba2ForSequenceClassification`] model. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Mamba2Config, Mamba2Model |
|
|
|
>>> # Initializing a Mamba2 configuration |
|
>>> configuration = Mamba2Config() |
|
|
|
>>> # Initializing a model (with random weights) from the configuration |
|
>>> model = Mamba2Model(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
``` |
|
""" |
|
|
|
model_type = "mamba2" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50280, |
|
pad_token_id=0, |
|
bos_token_id=0, |
|
eos_token_id=0, |
|
hidden_size=768, |
|
state_size=128, |
|
expand=2, |
|
chunk_size=256, |
|
mamba2_conv_kernel=4, |
|
attention_conv_kernel=4, |
|
mlp_intermediate_size=0, |
|
mlp_padding_size=128, |
|
mamba2_head_dim=64, |
|
attention_head_dim=128, |
|
num_attention_heads=30, |
|
num_key_value_heads=30, |
|
num_hidden_layers=24, |
|
attention_layers_idx=None, |
|
layer_norm_epsilon=1e-5, |
|
use_conv_bias=True, |
|
use_mlp_bias=False, |
|
use_mamba2_bias=False, |
|
use_attention_qkv_bias=False, |
|
use_attention_out_bias=False, |
|
hidden_act="silu", |
|
emb_initializer_range=0.02, |
|
conv_initializer_range=None, |
|
A_initializer_range=None, |
|
time_step_min=0.001, |
|
time_step_max=0.1, |
|
time_step_floor=1e-4, |
|
time_step_limit=None, |
|
residual_in_fp32=True, |
|
rescale_prenorm_residual=False, |
|
rope_emb_dim=64, |
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
max_position_embeddings=2048, |
|
tie_embedding_weights=True, |
|
use_cache=True, |
|
classifier_dropout=0.1, |
|
**kwargs, |
|
): |
|
|
|
attention_layers_idx = [] if attention_layers_idx is None else attention_layers_idx |
|
A_initializer_range = [1, 16] if A_initializer_range is None else A_initializer_range |
|
time_step_limit = [0.0, float("inf")] if time_step_limit is None else time_step_limit |
|
|
|
self.vocab_size = vocab_size |
|
self.pad_token_id = pad_token_id |
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
self.hidden_size = hidden_size |
|
self.state_size = state_size |
|
self.expand = expand |
|
self.intermediate_size = int(expand * self.hidden_size) |
|
self.chunk_size = chunk_size |
|
self.mamba2_conv_kernel = mamba2_conv_kernel |
|
self.attention_conv_kernel = attention_conv_kernel |
|
self.mlp_padding_size = mlp_padding_size |
|
self.mlp_intermediate_size = mlp_intermediate_size |
|
self.mamba2_head_dim = mamba2_head_dim |
|
self.mamba2_num_heads = self.intermediate_size // self.mamba2_head_dim |
|
self.attention_head_dim = attention_head_dim |
|
self.num_attention_heads = num_attention_heads |
|
self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads |
|
self.num_hidden_layers = num_hidden_layers |
|
self.attention_layers_idx = attention_layers_idx |
|
self._attention_layers_idx_validation() |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.use_conv_bias = use_conv_bias |
|
self.use_mlp_bias = use_mlp_bias |
|
self.use_mamba2_bias = use_mamba2_bias |
|
self.use_attention_qkv_bias = use_attention_qkv_bias |
|
self.use_attention_out_bias = use_attention_out_bias |
|
self.hidden_act = hidden_act |
|
self.emb_initializer_range = emb_initializer_range |
|
self.conv_initializer_range = conv_initializer_range |
|
self.A_initializer_range = A_initializer_range |
|
self.time_step_min = time_step_min |
|
self.time_step_max = time_step_max |
|
self.time_step_floor = time_step_floor |
|
self.time_step_limit = time_step_limit |
|
self.residual_in_fp32 = residual_in_fp32 |
|
self.rescale_prenorm_residual = rescale_prenorm_residual |
|
self.rope_emb_dim = rope_emb_dim |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
if self.rope_emb_dim > 0: |
|
self._rope_scaling_validation() |
|
self.max_position_embeddings = max_position_embeddings |
|
self.tie_embedding_weights = tie_embedding_weights |
|
self.use_cache = use_cache |
|
self.classifier_dropout = classifier_dropout |
|
|
|
super().__init__( |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
pad_token_id=pad_token_id, |
|
tie_embedding_weights=tie_embedding_weights, |
|
**kwargs, |
|
) |
|
|
|
|
|
def _rope_scaling_validation(self): |
|
""" |
|
Validate the `rope_scaling` configuration. |
|
""" |
|
if self.rope_scaling is None: |
|
return |
|
|
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: |
|
raise ValueError( |
|
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}" |
|
) |
|
rope_scaling_type = self.rope_scaling.get("type", None) |
|
rope_scaling_factor = self.rope_scaling.get("factor", None) |
|
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: |
|
raise ValueError( |
|
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" |
|
) |
|
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: |
|
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}") |
|
|
|
def _attention_layers_idx_validation(self): |
|
""" |
|
Validate the `attention_layers_idx` configuration. |
|
""" |
|
if isinstance(self.attention_layers_idx, list) and len(self.attention_layers_idx) == 0: |
|
return |
|
|
|
if not isinstance(self.attention_layers_idx, List) and all( |
|
isinstance(x, int) for x in self.attention_layers_idx |
|
): |
|
raise ValueError( |
|
"`attention_layers_idx` must be a list of integers indicating the attention layers, " |
|
f"got {self.attention_layers_idx}" |
|
) |
|
|
|
if min(self.attention_layers_idx) < 0 or max(self.attention_layers_idx) >= self.num_hidden_layers: |
|
raise ValueError( |
|
"`attention_layers_idx` has out-of-range indices, " |
|
f"got {self.attention_layers_idx}, but expected indices in {list(range(self.num_hidden_layers))}" |
|
) |
|
|