--- datasets: - PKU-Alignment/PKU-SafeRLHF language: - en tags: - reinforcement-learning-from-human-feedback - reinforcement-learning - beaver - safety - llama - ai-safety - deepspeed - rlhf - alpaca library_name: safe-rlhf --- # 🦫 Beaver's Cost Model ## Model Details The Beaver cost model is a preference model trained using the [PKU-SafeRLHF](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF) dataset. It can play a role in the safe RLHF algorithm, helping the Beaver model become more safe and harmless. - **Developed by:** the [PKU-Alignment](https://github.com/PKU-Alignment) Team. - **Model Type:** An auto-regressive language model based on the transformer architecture. - **License:** Non-commercial license. - **Fine-tuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca). ## Model Sources - **Repository:** - **Beaver:** - **Dataset:** - **Reward Model:** - **Cost Model:** - **Dataset Paper:** - **Paper:** ## How to Use the Cost Model ```python import torch from transformers import AutoTokenizer from safe_rlhf.models import AutoModelForScore model = AutoModelForScore.from_pretrained('PKU-Alignment/beaver-7b-unified-cost', torch_dtype=torch.bfloat16, device_map='auto') tokenizer = AutoTokenizer.from_pretrained('PKU-Alignment/beaver-7b-unified-cost') input = 'BEGINNING OF CONVERSATION: USER: hello ASSISTANT:Hello! How can I help you today?' input_ids = tokenizer(input, return_tensors='pt') output = model(**input_ids) print(output) # ScoreModelOutput( # scores=tensor([[[-2.7656], # [ 0.8320], # [-2.7656], # [-2.7500], # [-0.9023], # [-0.7891], # [-0.3125], # [-0.8008], # [-0.5117], # [-1.1562], # [-2.3906], # [-1.2266], # [-1.1797], # [-3.3281], # [-4.4062], # [-1.0234], # [-1.1484], # [-2.1406], # [-2.9531], # [-4.6250], # [-4.5312], # [-3.3594], # [-4.1250], # [-3.0156], # [-3.5156], # [-5.0000], # [-5.7812], # [-7.6562]]], grad_fn=), # end_scores=tensor([[-7.6562]], grad_fn=), # last_hidden_state=tensor([[[ 0.7148, 0.3594, -1.0234, ..., 0.5039, -0.0737, 1.4375], # [ 1.0781, -1.2812, 1.5078, ..., 0.9102, 1.3594, 1.4141], # [ 0.8047, 0.4551, -0.3262, ..., 0.3887, 0.6484, -0.4629], # ..., # [-0.1836, -0.6094, -0.8086, ..., -0.5078, 0.8086, 1.1719], # [ 0.9727, -1.5156, -1.2656, ..., -0.9766, 0.3535, 1.0156], # [ 4.2812, -1.6797, -0.4238, ..., 0.6758, -1.1875, -1.1562]]], # dtype=torch.bfloat16, grad_fn=), # end_last_hidden_state=tensor([[ 4.2812, -1.6797, -0.4238, ..., 0.6758, -1.1875, -1.1562]], # dtype=torch.bfloat16, grad_fn=), # end_index=tensor([27]) # ) ```