File size: 11,129 Bytes
62df734 409493f 62df734 409493f 62df734 c260ec7 316461e e213801 c260ec7 409493f c260ec7 409493f 7054784 409493f 7054784 409493f 25bc6ac 409493f aca7d70 409493f 7054784 0357625 409493f 0357625 a7b23ba 0357625 409493f 7054784 409493f 316461e 409493f 7054784 409493f 7054784 409493f 316461e 409493f 7054784 1005f1e 409493f 2dc7d77 409493f 7054784 409493f 7054784 409493f ce94f90 409493f ce94f90 409493f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
language:
- pt
tags:
- albertina-pt*
- albertina-ptpt
- albertina-ptbr
- albertina-ptpt-base
- albertina-ptbr-base
- fill-mask
- bert
- deberta
- portuguese
- encoder
- foundation model
license: mit
datasets:
- dlb/plue
- oscar-corpus/OSCAR-2301
- PORTULAN/glue-ptpt
widget:
- text: >-
A culinária portuguesa é rica em sabores e [MASK], tornando-se um dos
maiores tesouros do país.
---
---
<img align="left" width="40" height="40" src="https://github.githubassets.com/images/icons/emoji/unicode/1f917.png">
<p style="text-align: center;"> This is the model card for Albertina PT-PT base.
You may be interested in some of the other models in the <a href="https://huggingface.co/PORTULAN">Albertina (encoders) and Gervásio (decoders) families</a>.
</p>
---
# Albertina 100M PTPT
**Albertina 100M PTPT** is a foundation, large language model for European **Portuguese** from **Portugal**.
It is an **encoder** of the BERT family, based on the neural architecture Transformer and
developed over the DeBERTa model, with most competitive performance for this language.
It is distributed free of charge and under a most permissible license.
| Albertina's Family of Models |
|----------------------------------------------------------------------------------------------------------|
| [**Albertina 1.5B PTPT**](https://huggingface.co/PORTULAN/albertina-1b5-portuguese-ptpt-encoder) |
| [**Albertina 1.5B PTBR**](https://huggingface.co/PORTULAN/albertina-1b5-portuguese-ptbr-encoder) |
| [**Albertina 1.5B PTPT 256**](https://huggingface.co/PORTULAN/albertina-1b5-portuguese-ptpt-encoder-256)|
| [**Albertina 1.5B PTBR 256**](https://huggingface.co/PORTULAN/albertina-1b5-portuguese-ptbr-encoder-256)|
| [**Albertina 900M PTPT**](https://huggingface.co/PORTULAN/albertina-900m-portuguese-ptpt-encoder) |
| [**Albertina 900M PTBR**](https://huggingface.co/PORTULAN/albertina-900m-portuguese-ptbr-encoder) |
| [**Albertina 100M PTPT**](https://huggingface.co/PORTULAN/albertina-100m-portuguese-ptpt-encoder) |
| [**Albertina 100M PTBR**](https://huggingface.co/PORTULAN/albertina-100m-portuguese-ptbr-encoder) |
**Albertina 100M PTPT** is developed by a joint team from the University of Lisbon and the University of Porto, Portugal.
For further details, check the respective [publication](https://arxiv.org/abs/2403.01897):
``` latex
@misc{albertina-pt-fostering,
title={Fostering the Ecosystem of Open Neural Encoders
for Portuguese with Albertina PT-* family},
author={Rodrigo Santos and João Rodrigues and Luís Gomes
and João Silva and António Branco
and Henrique Lopes Cardoso and Tomás Freitas Osório
and Bernardo Leite},
year={2024},
eprint={2403.01897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
Please use the above cannonical reference when using or citing this model.
<br>
# Model Description
**This model card is for Albertina 100M PTPT base**, with 100M parameters, 12 layers and a hidden size of 768.
Albertina-PT-PT base is distributed under an [MIT license](https://huggingface.co/PORTULAN/albertina-ptpt/blob/main/LICENSE).
DeBERTa is distributed under an [MIT license](https://github.com/microsoft/DeBERTa/blob/master/LICENSE).
<br>
# Training Data
[**Albertina 100M PTPT**](https://huggingface.co/PORTULAN/albertina-ptpt-base) was trained over a 2.2 billion token data set that resulted from gathering some openly available corpora of European Portuguese from the following sources:
- [OSCAR](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301): the OSCAR data set includes documents in more than one hundred languages, including Portuguese, and it is widely used in the literature. It is the result of a selection performed over the [Common Crawl](https://commoncrawl.org/) data set, crawled from the Web, that retains only pages whose metadata indicates permission to be crawled, that performs deduplication, and that removes some boilerplate, among other filters. Given that it does not discriminate between the Portuguese variants, we performed extra filtering by retaining only documents whose meta-data indicate the Internet country code top-level domain of Portugal. We used the January 2023 version of OSCAR, which is based on the November/December 2022 version of Common Crawl.
- [DCEP](https://joint-research-centre.ec.europa.eu/language-technology-resources/dcep-digital-corpus-european-parliament_en): the Digital Corpus of the European Parliament is a multilingual corpus including documents in all official EU languages published on the European Parliament's official website. We retained its European Portuguese portion.
- [Europarl](https://www.statmt.org/europarl/): the European Parliament Proceedings Parallel Corpus is extracted from the proceedings of the European Parliament from 1996 to 2011. We retained its European Portuguese portion.
- [ParlamentoPT](https://huggingface.co/datasets/PORTULAN/parlamento-pt): the ParlamentoPT is a data set we obtained by gathering the publicly available documents with the transcription of the debates in the Portuguese Parliament.
## Preprocessing
We filtered the PTPT corpora using the [BLOOM pre-processing](https://github.com/bigscience-workshop/data-preparation) pipeline.
We skipped the default filtering of stopwords since it would disrupt the syntactic structure, and also the filtering for language identification given the corpus was pre-selected as Portuguese.
## Training
As codebase, we resorted to the [DeBERTa V1 base](https://huggingface.co/microsoft/deberta-base), for English.
To train [**Albertina 100M PTPT**](https://huggingface.co/PORTULAN/albertina-ptpt-base), the data set was tokenized with the original DeBERTa tokenizer with a 128 token sequence truncation and dynamic padding.
The model was trained using the maximum available memory capacity resulting in a batch size of 3072 samples (192 samples per GPU).
We opted for a learning rate of 1e-5 with linear decay and 10k warm-up steps.
A total of 200 training epochs were performed resulting in approximately 180k steps.
The model was trained for one day on a2-megagpu-16gb Google Cloud A2 VMs with 16 GPUs, 96 vCPUs and 1.360 GB of RAM.
<br>
# Evaluation
The base model version was evaluated on downstream tasks, namely the translations into PT-PT of the English data sets used for a few of the tasks in the widely-used [GLUE benchmark](https://huggingface.co/datasets/glue).
## GLUE tasks translated
We resorted to [GLUE-PT](https://huggingface.co/datasets/PORTULAN/glue-ptpt), a **PTPT version of the GLUE** benchmark.
We automatically translated the same four tasks from GLUE using [DeepL Translate](https://www.deepl.com/), which specifically provides translation from English to PT-PT as an option.
| Model | RTE (Accuracy) | WNLI (Accuracy)| MRPC (F1) | STS-B (Pearson) |
|--------------------------|----------------|----------------|-----------|-----------------|
| **Albertina 900m PTPT** | **0.8339** | 0.4225 | **0.9171**| **0.8801** |
| **Albertina 100m PTPT** | 0.6787 | **0.4507** | 0.8829 | 0.8581 |
<br>
# How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='PORTULAN/albertina-ptpt-base')
>>> unmasker("A culinária portuguesa é rica em sabores e [MASK], tornando-se um dos maiores tesouros do país.")
[{'score': 0.8332648277282715, 'token': 14690, 'token_str': ' costumes', 'sequence': 'A culinária portuguesa é rica em sabores e costumes, tornando-se um dos maiores tesouros do país.'},
{'score': 0.07860890030860901, 'token': 29829, 'token_str': ' cores', 'sequence': 'A culinária portuguesa é rica em sabores e cores, tornando-se um dos maiores tesouros do país.'},
{'score': 0.03278181701898575, 'token': 35277, 'token_str': ' arte', 'sequence': 'A culinária portuguesa é rica em sabores e arte, tornando-se um dos maiores tesouros do país.'},
{'score': 0.009515956044197083, 'token': 9240, 'token_str': ' cor', 'sequence': 'A culinária portuguesa é rica em sabores e cor, tornando-se um dos maiores tesouros do país.'},
{'score': 0.009381960146129131, 'token': 33455, 'token_str': ' nuances', 'sequence': 'A culinária portuguesa é rica em sabores e nuances, tornando-se um dos maiores tesouros do país.'}]
```
The model can be used by fine-tuning it for a specific task:
```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
>>> from datasets import load_dataset
>>> model = AutoModelForSequenceClassification.from_pretrained("PORTULAN/albertina-ptpt-base", num_labels=2)
>>> tokenizer = AutoTokenizer.from_pretrained("PORTULAN/albertina-ptpt-base")
>>> dataset = load_dataset("PORTULAN/glue-ptpt", "rte")
>>> def tokenize_function(examples):
... return tokenizer(examples["sentence1"], examples["sentence2"], padding="max_length", truncation=True)
>>> tokenized_datasets = dataset.map(tokenize_function, batched=True)
>>> training_args = TrainingArguments(output_dir="albertina-ptpt-rte", evaluation_strategy="epoch")
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=tokenized_datasets["train"],
... eval_dataset=tokenized_datasets["validation"],
... )
>>> trainer.train()
```
<br>
# Citation
When using or citing this model, kindly cite the following [publication](https://arxiv.org/abs/2403.01897):
``` latex
@misc{albertina-pt-fostering,
title={Fostering the Ecosystem of Open Neural Encoders
for Portuguese with Albertina PT-* family},
author={Rodrigo Santos and João Rodrigues and Luís Gomes
and João Silva and António Branco
and Henrique Lopes Cardoso and Tomás Freitas Osório
and Bernardo Leite},
year={2024},
eprint={2403.01897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<br>
# Acknowledgments
The research reported here was partially supported by: PORTULAN CLARIN—Research Infrastructure for the Science and Technology of Language,
funded by Lisboa 2020, Alentejo 2020 and FCT—Fundação para a Ciência e Tecnologia under the
grant PINFRA/22117/2016; research project ALBERTINA - Foundation Encoder Model for Portuguese and AI, funded by FCT—Fundação para a Ciência e Tecnologia under the
grant CPCA-IAC/AV/478394/2022; innovation project ACCELERAT.AI - Multilingual Intelligent Contact Centers, funded by IAPMEI, I.P. - Agência para a Competitividade e Inovação under the grant C625734525-00462629, of Plano de Recuperação e Resiliência, call RE-C05-i01.01 – Agendas/Alianças Mobilizadoras para a Reindustrialização; and LIACC - Laboratory for AI and Computer Science, funded by FCT—Fundação para a Ciência e Tecnologia under the grant FCT/UID/CEC/0027/2020. |