File size: 2,361 Bytes
07001e4 c5599be 3a688ff c5599be 2acbbf3 4c9f85c 43b3546 4ff6094 43b3546 a7f5269 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: llama2
---
EXL2 quants of alpindale/goliath-120b (https://huggingface.co/alpindale/goliath-120b), to be used on exllamav2.
Calibration dataset is a cleaned, fixed pippa RP dataset, which does affect the results (in favor) for RP usage. You can find the calibration dataset [here.](https://huggingface.co/datasets/royallab/PIPPA-cleaned)
I've added a measurement.json file on the main branch if you want to do your own quants.
[4.85bpw](https://huggingface.co/Panchovix/goliath-120b-exl2-rpcal/tree/4.85bpw)
[4.5bpw](https://huggingface.co/Panchovix/goliath-120b-exl2-rpcal/tree/4.5bpw)
[3bpw](https://huggingface.co/Panchovix/goliath-120b-exl2-rpcal/tree/3bpw)
# Original model card
# Goliath 120B
An auto-regressive causal LM created by combining 2x finetuned [Llama-2 70B](https://huggingface.co/meta-llama/llama-2-70b-hf) into one.
Please check out the quantized formats provided by [@TheBloke](https:///huggingface.co/TheBloke) and [@Panchovix](https://huggingface.co/Panchovix):
- [GGUF](https://huggingface.co/TheBloke/goliath-120b-GGUF) (llama.cpp)
- [GPTQ](https://huggingface.co/TheBloke/goliath-120b-GPTQ) (KoboldAI, TGW, Aphrodite)
- [AWQ](https://huggingface.co/TheBloke/goliath-120b-AWQ) (TGW, Aphrodite, vLLM)
- [Exllamav2](https://huggingface.co/Panchovix/goliath-120b-exl2) (TGW, KoboldAI)
# Prompting Format
Both Vicuna and Alpaca will work, but due the initial and final layers belonging primarily to Xwin, I expect Vicuna to work the best.
# Merge process
The models used in the merge are [Xwin](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1) and [Euryale](https://huggingface.co/Sao10K/Euryale-1.3-L2-70B).
The layer ranges used are as follows:
```yaml
- range 0, 16
Xwin
- range 8, 24
Euryale
- range 17, 32
Xwin
- range 25, 40
Euryale
- range 33, 48
Xwin
- range 41, 56
Euryale
- range 49, 64
Xwin
- range 57, 72
Euryale
- range 65, 80
Xwin
```
# Screenshots
![image/png](https://cdn-uploads.huggingface.co/production/uploads/635567189c72a7e742f1419c/Cat8_Rimaz6Ni7YhQiiGB.png)
# Benchmarks
Coming soon.
# Acknowledgements
Credits goes to [@chargoddard](https://huggingface.co/chargoddard) for developing the framework used to merge the model - [mergekit](https://github.com/cg123/mergekit).
Special thanks to [@Undi95](https://huggingface.co/Undi95) for helping with the merge ratios. |