a2c-AntBulletEnv-v0 / config.json
Parthi's picture
Initial commit
1c36f1c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e80ab5750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e80ab57e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e80ab5870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e80ab5900>", "_build": "<function ActorCriticPolicy._build at 0x7f7e80ab5990>", "forward": "<function ActorCriticPolicy.forward at 0x7f7e80ab5a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7e80ab5ab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e80ab5b40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7e80ab5bd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e80ab5c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e80ab5cf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e80ab5d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7e80abb900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686222481026840666, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGfJV0CmUGW/5PWFPrP6kr+I4Q2//+YywM3fXT+sIK49Pn4TwHsBDEArFQW/+DMBQMpBVL8GMbm+YXTXP0GW8b/RSw/Aahn6vjnI+z9NRN883dAqvIYrgb95ZyfAgydnvP93jr+whu+/A/X4v/0khr+9fMS/PO+pP2gCTb69Lcm/KU8Xvv3jtD5napo+ywRKP+bgkj0s/zE+wbgXv4qj6ryvd5m/kf+IPWSYqT6IM4S9qLh0P0/AlL792DY/xBBlv4hDF79he6s+CLBbv02PoztXAGY/r80IPwP1+L8fRnQ/BOqIvVwTCL8D0tI+8F2DPi60ir+OS44/3jQvPu6aL7//NYE+Es73PEXljD2pm6++VUk7v1Suez/MzGw+ZR8NP3sShb5Otas/uMxRPy6kQbs7USC/8cfFPU6tzz6zOsw+/3eOv6/NCD//ngM/H0Z0P4ozNz/3Tkg/BAN0PjzoBT+NTUO/arNsP3o40D7TXI2/asU/Pj1IlT83CCE/jPOkvnZzSj3r/LE/K3PnPQIYiT/cKFw/lgoBQPgIaj8Sfq47pWMdvzaCljzzzH4/QrPCPv93jr+vzQg/A/X4vx9GdD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADIOkc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfY2bvAAAAABwpP+/AAAAABvXmz0AAAAAtNX6PwAAAACTjLy8AAAAAHT2+z8AAAAAix0oPQAAAAC+4tm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPOC4tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgByNjr0AAAAA+ovevwAAAADAY6e9AAAAALON/D8AAAAATd2vvQAAAAC39gBAAAAAAPGJCT4AAAAA2xbnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOSInzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID70U89AAAAAJ9x6r8AAAAAJ0rtPQAAAACAc9o/AAAAALHjuD0AAAAAY1j8PwAAAAA/ZtQ9AAAAANAP6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADLuLO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAu1fmPQAAAAA0P/2/AAAAACAOZj0AAAAAg43ePwAAAAANSha9AAAAAPBm8D8AAAAAsGENPgAAAAA4zOu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ7QEQ6IWP+MAWyUTegDjAF0lEdArPK+gBcRlHV9lChoBkdAoApg//vOQmgHTegDaAhHQKz1LHvMKTl1fZQoaAZHQKBLwu2Zy+9oB03oA2gIR0Cs/DxKYiPidX2UKGgGR0Cgd5uGj9GaaAdN6ANoCEdArP1nMyJsPHV9lChoBkdAoIGVvsJID2gHTegDaAhHQK0CCQmu1Wt1fZQoaAZHQJ7gcqDsdDJoB03oA2gIR0CtBfirksBidX2UKGgGR0CgIJltsN2DaAdN6ANoCEdArQ1Ywwj+rHV9lChoBkdAnyLcGcFyJmgHTegDaAhHQK0OJiZv1lJ1fZQoaAZHQKBz6Ae7tiRoB03oA2gIR0CtETjeCTUzdX2UKGgGR0CgPxkR8MNMaAdN6ANoCEdArRO6QiiZfHV9lChoBkdAoANCPCEYfmgHTegDaAhHQK0ajCO3lS11fZQoaAZHQKAEC5GSZBtoB03oA2gIR0CtG1sPz4DcdX2UKGgGR0Cgz/IWHk92aAdN6ANoCEdArR+yKLsKLXV9lChoBkdAoANP4dp7C2gHTegDaAhHQK0jlFcY64l1fZQoaAZHQKCWW66reZZoB03oA2gIR0CtK9AqVhTgdX2UKGgGR0CfMzxSHdoGaAdN6ANoCEdArSyhVyWAw3V9lChoBkdAoK1J0lqrR2gHTegDaAhHQK0vzIpYs/Z1fZQoaAZHQKA2i43m3fBoB03oA2gIR0CtMl0tAcDKdX2UKGgGR0Cc/RSFGoaUaAdN6ANoCEdArTlDXQMQVnV9lChoBkdAnU+O7Dl5nmgHTegDaAhHQK06EgUUO/d1fZQoaAZHQJy0nG7z06JoB03oA2gIR0CtPf04JeE7dX2UKGgGR0Cb9iyAhB7eaAdN6ANoCEdArUHQ4ffXPXV9lChoBkdAnC+l8ohIOGgHTegDaAhHQK1KsZssQNF1fZQoaAZHQJgaWI42jwhoB03oA2gIR0CtS3nDaXa8dX2UKGgGR0CQoELLZBcBaAdN6ANoCEdArU575j6N2nV9lChoBkdAlUo40ALiM2gHTegDaAhHQK1Q8trbg0l1fZQoaAZHQHpaOvUz9CNoB03oA2gIR0CtV6ApazNVdX2UKGgGR0CAOh7x/d6+aAdN6ANoCEdArVhte+mFanV9lChoBkdAeYCvBrN4aGgHTegDaAhHQK1bjKNhmXh1fZQoaAZHQJCcGAXl8w5oB03oA2gIR0CtXysxXXAedX2UKGgGR0CQ123os7MgaAdN6ANoCEdArWlEBbOeKHV9lChoBkdAlJ1pf2K2rmgHTegDaAhHQK1qHbj94u91fZQoaAZHQJdTnMSsbNtoB03oA2gIR0CtbS22w3YMdX2UKGgGR0CNDhtygf2caAdN6ANoCEdArW+6XOW0JHV9lChoBkdAmlnZGOMl1WgHTegDaAhHQK12p7k4m1J1fZQoaAZHQJ2fKEytV7xoB03oA2gIR0Ctd4Hx8UmEdX2UKGgGR0CcW8RwqAjIaAdN6ANoCEdArXqsVUModHV9lChoBkdAoAKfGOuJUGgHTegDaAhHQK191SApazN1fZQoaAZHQKEpzXnQpnZoB03oA2gIR0CtiLfnwG4adX2UKGgGR0CgvwcHv+fiaAdN6ANoCEdArYmh/qgRLHV9lChoBkdAoGsqs8xKx2gHTegDaAhHQK2M5QrMC911fZQoaAZHQJzbWlGgBcRoB03oA2gIR0Ctj2mYjSogdX2UKGgGR0CFJJTvRZ2ZaAdN6ANoCEdArZbCSNfgJnV9lChoBkdAnMDxLTQVsWgHTegDaAhHQK2XpLK3d9F1fZQoaAZHQKFSF9UCJXRoB03oA2gIR0CtmvfxMFlkdX2UKGgGR0Cg18pBX0XhaAdN6ANoCEdArZ4Z2hZha3V9lChoBkdAoPPsNpdrwmgHTegDaAhHQK2pFUc4o7V1fZQoaAZHQKFRYjdHlOpoB03oA2gIR0CtqhdN34bkdX2UKGgGR0ChnPiCz1K5aAdN6ANoCEdAra12vIOpbXV9lChoBkdAoI8kALiMpGgHTegDaAhHQK2wLcyFfzB1fZQoaAZHQKCepIOH311oB03oA2gIR0Cttz1zySV4dX2UKGgGR0CfPsOVPepGaAdN6ANoCEdArbgbtmcvunV9lChoBkdAnDe2SpzcRGgHTegDaAhHQK27PkT6BRR1fZQoaAZHQKBKiC2c8T1oB03oA2gIR0CtvgQ/PgNxdX2UKGgGR0CfdY0dzXBhaAdN6ANoCEdArciK6Ymb9nV9lChoBkdAn6/yy+pOvmgHTegDaAhHQK3Jy+3Ytg91fZQoaAZHQJ/43sOXmeVoB03oA2gIR0CtzOeQMhHLdX2UKGgGR0CgKcN6gM+eaAdN6ANoCEdArc9fIKc/dXV9lChoBkdAobjvrjYI0WgHTegDaAhHQK3WNwx33Yd1fZQoaAZHQKE4JiiItUZoB03oA2gIR0Ct1wy4e9zwdX2UKGgGR0Chjx0x/NJOaAdN6ANoCEdArdo2YYzi0nV9lChoBkdAoXUD7bcoIGgHTegDaAhHQK3c02QXAM51fZQoaAZHQKEKdQ/HHWBoB03oA2gIR0Ct5t4FqzqsdX2UKGgGR0Cg7Op6Y3NtaAdN6ANoCEdAregsDp1RtXV9lChoBkdAoJBHzSThYWgHTegDaAhHQK3sS8nNPgx1fZQoaAZHQKDKhxri2lVoB03oA2gIR0Ct7tayjYZmdX2UKGgGR0ChXfFMIu5CaAdN6ANoCEdArfXZuCPIXHV9lChoBkdAnRhBdUsFuGgHTegDaAhHQK32rN9H+ZR1fZQoaAZHQKC7jAaef7JoB03oA2gIR0Ct+fPJRwZPdX2UKGgGR0Cg/hudGy5aaAdN6ANoCEdArfx3ssxwhnV9lChoBkdAeK/0IC2c8WgHTegDaAhHQK4GJVhkRSR1fZQoaAZHQJ+Y28qWkadoB03oA2gIR0CuB3wi7kGSdX2UKGgGR0CfjxVhTfixaAdN6ANoCEdArgvRvR7Z4HV9lChoBkdAm7Oo4dZJTWgHTegDaAhHQK4OTHVf/m11fZQoaAZHQKC4qOz6ab5oB03oA2gIR0CuFSv0qYqodX2UKGgGR0CcNJns9jgAaAdN6ANoCEdArhX3i1iON3V9lChoBkdAob/l7WuoxmgHTegDaAhHQK4ZBZA6dUd1fZQoaAZHQKB0KiUPhAJoB03oA2gIR0CuG3zc6/7BdX2UKGgGR0CgEMHAh0QsaAdN6ANoCEdAriPQzFdcB3V9lChoBkdAoTv+jynUD2gHTegDaAhHQK4lLbTMJQd1fZQoaAZHQKEmAxdpqRFoB03oA2gIR0CuKkRdY4hmdX2UKGgGR0CgxUgp8WsSaAdN6ANoCEdAri0m74BV/HV9lChoBkdAnc3NRNyo42gHTegDaAhHQK40DHcUM5R1fZQoaAZHQKEh6Yu01IloB03oA2gIR0CuNNNGViWndX2UKGgGR0Cg1By6MBIXaAdN6ANoCEdArjfvMB6rvXV9lChoBkdAlta9pEhJRWgHTegDaAhHQK46dVNHpbF1fZQoaAZHQJrl0IIF/x5oB03oA2gIR0CuQhNYbKigdX2UKGgGR0CdV2Pacqe9aAdN6ANoCEdArkNHN7jT8nV9lChoBkdAnCGusgdOqWgHTegDaAhHQK5IQy3Td+J1fZQoaAZHQKDoMmx+rlxoB03oA2gIR0CuTAxdhRZVdX2UKGgGR0Cea9yI55quaAdN6ANoCEdArlMAPXkHU3V9lChoBkdAoGWd3+uNgmgHTegDaAhHQK5T1x8UmD11fZQoaAZHQJ4GqZiNKiBoB03oA2gIR0CuVwLlvIfbdX2UKGgGR0CgpfJIUahpaAdN6ANoCEdArlmYywfQr3V9lChoBkdAnWcY9TxXn2gHTegDaAhHQK5g3b2USqV1fZQoaAZHQKAXnSQYDT1oB03oA2gIR0CuYhk2xY7rdX2UKGgGR0CfcnXuVopQaAdN6ANoCEdArmbMhX8wYnV9lChoBkdAnTuNIXj2jGgHTegDaAhHQK5q9aLXL/11fZQoaAZHQJ81wc94eLhoB03oA2gIR0CuclMYVIqcdX2UKGgGR0CdZtefqX4TaAdN6ANoCEdArnMoWBSUDHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}