PascalY commited on
Commit
0906335
·
1 Parent(s): 9e49c8c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -1
README.md CHANGED
@@ -5,9 +5,36 @@ tags:
5
  - generated_from_trainer
6
  datasets:
7
  - conll2003
 
 
 
 
 
8
  model-index:
9
  - name: bert-finetuned-ner
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -16,6 +43,12 @@ should probably proofread and complete it, then remove this comment. -->
16
  # bert-finetuned-ner
17
 
18
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset.
 
 
 
 
 
 
19
 
20
  ## Model description
21
 
@@ -42,6 +75,15 @@ The following hyperparameters were used during training:
42
  - lr_scheduler_type: linear
43
  - num_epochs: 3
44
 
 
 
 
 
 
 
 
 
 
45
  ### Framework versions
46
 
47
  - Transformers 4.31.0
 
5
  - generated_from_trainer
6
  datasets:
7
  - conll2003
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
  model-index:
14
  - name: bert-finetuned-ner
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: conll2003
21
+ type: conll2003
22
+ config: conll2003
23
+ split: validation
24
+ args: conll2003
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.9374896093100582
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9490070683271625
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9432131805636865
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9873862137989102
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
  # bert-finetuned-ner
44
 
45
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.0579
48
+ - Precision: 0.9375
49
+ - Recall: 0.9490
50
+ - F1: 0.9432
51
+ - Accuracy: 0.9874
52
 
53
  ## Model description
54
 
 
75
  - lr_scheduler_type: linear
76
  - num_epochs: 3
77
 
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0729 | 1.0 | 1756 | 0.0607 | 0.9117 | 0.9366 | 0.9240 | 0.9839 |
83
+ | 0.0361 | 2.0 | 3512 | 0.0538 | 0.9250 | 0.9468 | 0.9358 | 0.9864 |
84
+ | 0.0205 | 3.0 | 5268 | 0.0579 | 0.9375 | 0.9490 | 0.9432 | 0.9874 |
85
+
86
+
87
  ### Framework versions
88
 
89
  - Transformers 4.31.0