--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9374896093100582 - name: Recall type: recall value: 0.9490070683271625 - name: F1 type: f1 value: 0.9432131805636865 - name: Accuracy type: accuracy value: 0.9873862137989102 --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0579 - Precision: 0.9375 - Recall: 0.9490 - F1: 0.9432 - Accuracy: 0.9874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0729 | 1.0 | 1756 | 0.0607 | 0.9117 | 0.9366 | 0.9240 | 0.9839 | | 0.0361 | 2.0 | 3512 | 0.0538 | 0.9250 | 0.9468 | 0.9358 | 0.9864 | | 0.0205 | 3.0 | 5268 | 0.0579 | 0.9375 | 0.9490 | 0.9432 | 0.9874 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3