--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: whisper-tiny-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.53 --- # whisper-tiny-finetuned-gtzan This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.3365 - Accuracy: 0.53 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.3484 | 1.0 | 113 | 1.8521 | 0.26 | | 1.9419 | 2.0 | 226 | 1.9107 | 0.3 | | 1.8627 | 3.0 | 339 | 1.5300 | 0.49 | | 1.8178 | 4.0 | 452 | 1.5152 | 0.41 | | 1.5341 | 5.0 | 565 | 1.3365 | 0.53 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3