phi_moe_20 / configuration_phimoe.py
Pearush's picture
Upload configuration_phimoe.py with huggingface_hub
c95a58e verified
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Phi-MoE model."""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
PHIMOE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/Phi-3.5-MoE-instruct": "https://huggingface.co/microsoft/Phi-3.5-MoE-instruct/resolve/main/config.json",
}
class PhiMoEConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PhiMoEModel`]. It is used to instantiate a Phi-MoE
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the
[microsoft/Phi-3.5-MoE-instruct](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32064):
Vocabulary size of the PhiMoE model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`PhiMoEModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 6400):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
allows sequence of up to 4096*32 tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`dict`, *optional*):
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
contain the following keys: `type`, `short_factor`, `long_factor`, `short_mscale`, `long_mscale` and
`original_max_position_embeddings`. The `type` must be `longrope`, the `short_mscale` and `long_scale` must
be numbers, the `short_factor` and `long_factor` must be lists of numbers with the same length as half of
the attention head size and the `original_max_position_embeddings` must be an integer.
sliding_window (`int`, *optional*):
Sliding window attention window size. If not specified, will default to `262144`.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
num_experts_per_tok (`int`, *optional*, defaults to 2):
The number of experts to root per-token, can be also interpreted as the `top-p` routing
parameter
num_local_experts (`int`, *optional*, defaults to 16):
Number of experts per Sparse MLP layer.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabeling this will also
allow the model to output the auxiliary loss. See [here]() for more details
router_aux_loss_coef (`float`, *optional*, defaults to 0.0):
The aux loss factor for the total loss.
router_jitter_noise (`float`, *optional*, defaults to 0.01):
Amount of noise to add to the router.
```python
>>> from transformers import PhiMoEModel, PhiMoEConfig
>>> # Initializing a Phi-3 style configuration
>>> configuration = PhiMoEConfig.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
>>> # Initializing a model from the configuration
>>> model = PhiMoEModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "phimoe"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32064,
hidden_size=4096,
intermediate_size=6400,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=8,
hidden_act="silu",
max_position_embeddings=4096 * 32,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=1e6,
rope_scaling=None,
sliding_window=None,
attention_dropout=0.0,
num_experts_per_tok=2,
num_local_experts=16,
output_router_logits=False,
router_aux_loss_coef=0.001,
router_jitter_noise=0.01,
input_jitter_noise=0.0,
attention_bias = False,
lm_head_bias = False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.sliding_window = sliding_window
self.attention_bias = attention_bias
self.lm_head_bias = lm_head_bias
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
self.num_experts_per_tok = num_experts_per_tok
self.num_local_experts = num_local_experts
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.router_jitter_noise = router_jitter_noise
self.input_jitter_noise = input_jitter_noise
self.rope_scaling = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 6:
raise ValueError(
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor`, `long_factor`, "
f"`short_mscale`, `long_mscale` and `original_max_position_embeddings`, got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
rope_scaling_short_mscale = self.rope_scaling.get("short_mscale", None)
rope_scaling_long_mscale = self.rope_scaling.get("long_mscale", None)
original_max_position_embeddings = self.rope_scaling.get("original_max_position_embeddings", None)
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
if not (
isinstance(rope_scaling_short_factor, list)
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
):
raise ValueError(
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
)
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
raise ValueError(
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
)
if not (
isinstance(rope_scaling_long_factor, list)
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
):
raise ValueError(
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
)
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
raise ValueError(
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
)
if not isinstance(rope_scaling_short_mscale, (int, float)):
raise ValueError(
f"`rope_scaling`'s short_mscale field must be a number, got {rope_scaling_short_mscale}"
)
if not isinstance(rope_scaling_long_mscale, (int, float)):
raise ValueError(
f"`rope_scaling`'s long_mscale field must be a number, got {rope_scaling_long_mscale}"
)
if not isinstance(original_max_position_embeddings, int):
raise ValueError(
f"`rope_scaling`'s original_max_position_embeddings field must be an integer, got {original_max_position_embeddings}"
)