--- license: other datasets: - anon8231489123/ShareGPT_Vicuna_unfiltered - PengQu/langchain-MRKL-finetune language: - zh - en --- # Llama-2-7b-vicuna-Chinese Llama-2-7b-vicuna-Chinese是在中英双语sharegpt数据上全参数微调的对话模型。 - 基座模型:[meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) 允许商业使用。 - 微调数据:ShareGPT,ShareGPT-ZH,Langchain-MRKL-finetune - 训练代码:基于[FastChat](https://github.com/lm-sys/FastChat) Llama-2-7b-vicuna-Chinese is a chat model supervised finetuned on vicuna sharegpt data in both **English** and **Chinese**. - Foundation model: [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf), a **commercially available** language model. - Finetuning data: ShareGPT,ShareGPT-ZH,Langchain-MRKL-finetune - Training code: based on [FastChat](https://github.com/lm-sys/FastChat) #### 主要改进:中英能力相比Llama2原版和vicuna均有提升 - 英语能力基础评测(MMLU): Llama-2-7b-vicuna-Chinese(48.8) > Llama-2-7b(45.3) > vicuna1.1(44.8) - 中文能力基础评测(C-Eval): Llama-2-7b-vicuna-Chinese(34.7) > Llama-2-7b-chat(30.3)= vicuna1.1(30.3) - 实测效果:不会出现Llama2-chat的过于谨慎的状况
- English Eval results(MMLU): Llama-2-7b-vicuna-Chinese(48.8) > Llama-2-7b(45.3) > vicuna1.1(44.8) - Chinese Eval results(C-Eval): Llama-2-7b-vicuna-Chinese(34.7) > Llama-2-7b-chat(30.3)= vicuna1.1(30.3) - Empirical Results: It will not be overly cautious like Llama2-chat. ## Loading the Weights with Hugging Face Transformers See the following example for usage. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("PengQu/Llama-2-7b-vicuna-Chinese",use_fast=False) model = AutoModelForCausalLM.from_pretrained("PengQu/Llama-2-7b-vicuna-Chinese").to("cuda") instruction = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {} ASSISTANT:" prompt = instruction.format('用flask写一个简单的http服务器。') input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generation_output = model.generate(input_ids=input_ids, max_new_tokens=512) print(tokenizer.decode(generation_output[0],skip_special_tokens=True)) ``` 输出如下(output as follows):
``` 要使 用Flask创建一个简单的HTTP服务器,您需要在终端中运行以下命令: pip install Flask 这将安装Flask包并准备您使用它。 以下是一个简单的Flask应用程序,它侦听端口5000并响应“Hello, World!”消息: from flask import Flask app = Flask(__name__) @app.route('/') def hello(): return 'Hello, World!' if __name__ == '__main__': app.run(debug=True) 要运行此应用程序,您可以将代码保存到名为`app.py`的文件中,然后在终端中运行以下命令: python app.py 这将启动Flask服务器,并且您应该能够通过在Web浏览器中访问`http://localhost:5000`来访问“Hello, World!”消息。 您还可以使用Flask的路由功能为不同的URL定义不同的端点。例如,您可以定义一个路由,在端口8080上侦听,并响应“Hello, Flask!”消息: from flask import Flask app = Flask(__name__) @app.route('/') def hello(): return 'Hello, Flask!' if __name__ == '__main__': app.run(debug=True, host='localhost', port=8080) 要运行此应用程序,您可以将代码保存到名为`app.py`的文件中,然后在终端中运行以下命令: python app.py ```