--- license: afl-3.0 base_model: dlicari/Italian-Legal-BERT-SC tags: - generated_from_trainer model-index: - name: model results: [] language: - it library_name: transformers pipeline_tag: fill-mask --- # model This model is a fine-tuned version of [dlicari/Italian-Legal-BERT-SC](https://huggingface.co/dlicari/Italian-Legal-BERT-SC) on a custom dataset about financial norms. ## Intended uses & limitations This mode has just been further pre-trained, if you intend to use it for downstream task you should fine-tune it with your data. ## Usage To use this model you can use the following script: ```python from transformers import AutoTokenizer, AutoModel,CamembertModel,pipeline import torch model = CamembertModel.from_pretrained("PeppePasti/IT-FINANCIAL-BERT") tokenizer = AutoTokenizer.from_pretrained("dlicari/Italian-Legal-BERT-SC") tokenizer.model_max_length=512 classifier = pipeline("fill-mask", model=model, tokenizer=tokenizer) classifier(" La Repubblica riconosce a tutti i il diritto al lavoro e promuove le condizioni che rendano effettivo questo diritto.") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.5 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Input Tokens Seen | |:-------------:|:------:|:----:|:-----------------:| | 0.4096 | 0.9982 | 202 | 211812352 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.3.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1