import gradio as gr import peft from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and config when the script starts config = PeftConfig.from_pretrained("PhantHive/llama-2-7b-momo") model = AutoModelForCausalLM.from_pretrained("NousResearch/Llama-2-7b-chat-hf") model = PeftModel.from_pretrained(model, "PhantHive/llama-2-7b-momo") # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-chat-hf") def greet(text): batch = tokenizer(f"'{text}' ->: ", return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=100) return tokenizer.decode(output_tokens[0], skip_special_tokens=True) iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch()