File size: 3,268 Bytes
1db5200
 
 
 
 
 
 
 
 
fba89a8
 
 
1db5200
 
 
 
 
 
 
 
 
 
 
 
 
fba89a8
 
3e11e9b
1db5200
 
 
 
 
a0a497f
fba89a8
 
a0a497f
fba89a8
 
 
a0a497f
1db5200
 
 
8e05648
 
 
 
3e29d41
8e05648
 
 
 
 
 
 
 
 
 
3ea1d3b
1db5200
 
 
 
8950dd2
1db5200
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
tags:
- medical
datasets:
- biomed
---
# BioMedGPT-LM-7B

**BioMedGPT-LM-7B** is the first large generative language model based on Llama2 in the biomedical domain. 
It was fine-tuned from the Llama2-7B-Chat with millions of biomedical papers from the [S2ORC corpus](https://github.com/allenai/s2orc/blob/master/README.md). 
Through further fine-tuning, BioMedGPT-LM-7B outperforms or is on par with human and significantly larger general-purpose foundation models on several biomedical QA benchmarks.


### Training Details



The model was trained with the following hyperparameters:

* Epochs: 5 
* Batch size: 192 
* Cutoff length: 2048
* Learning rate: 2e-5

BioMedGPT-LM-7B is finetuned on over 26 billion tokens highly pertinent to the field of biomedicine. 
The fine-tuning data are extracted from 5.5 million biomedical papers in S2ORC data using PubMed Central (PMC)-ID and PubMed ID as criteria.


### Model Developers 
PharMolix  

### How to Use

BioMedGPT-LM-7B is the generative language model of **[BioMedGPT-10B](https://github.com/BioFM/OpenBioMed)**, an open-source version of BioMedGPT. 
BioMedGPT is an open multimodal generative pre-trained transformer (GPT) for biomedicine, which bridges the natural language modality and diverse biomedical data modalities via large generative language models. 

More technical details of BioMedGPT-LM-7B, BioMedGPT-10B, and BioMedGPT can be found in the [technical report](https://pan.baidu.com/s/1iAMBkuoZnNAylhopP5OgEg?pwd=7a6b). 

![The architecture of BioMedGPT-10B](BioMedGPT-10B.jpeg)


**Intended Use Cases**

|      **Method**        | Parameters (B) | Setting   | MedMCQA(\%) | PubMedQA(\%) |
|------------------------|----------------|-----------|-------------|--------------| 
| Human (pass)*          |        -       |  Manual   | -           | 60.0         | 
| Human (expert)*        |        -       |  Manual   | 90          | 78.0         | 
|------------------------|----------------|-----------|-------------|--------------|
| InstructGPT*           | 175            | zero-shot | 44.0        | 73.2         | 
| ChatGPT*               | -              | zero-shot | 44.7        | 63.9         | 
| Llama*                 | 7              | zero-shot | 24.3        | 5.2          | 
| Llama2                 | 7              | zero-shot | 30.6        | 3.7          | 
| Llama2-Chat            | 7              | zero-shot | 35.5        | 21.9         |
|------------------------|----------------| --------- |-------------|--------------|
| Llama                  | 7              |Fine-tuing | 48.2        | 73.4         |
| Llama2-Chat            | 7              |Fine-tuing | 48.3        | 75.5         | 
| PMC-Llama              | 7              |Fine-tuing | 50.5        | 69.5         | 
|------------------------|----------------|-----------|-------------|--------------|
| **BioMedGPT-LM-7B**    | 7              |Fine-tuing | **51.4**    | **76.1**     | 

**Out-of-scope Uses**


### Technical Report
"BioMedGPT: Open Multimodal Generative Pre-trained Transformer for BioMedicine"


### github
[https://github.com/BioFM/OpenBioMed](https://github.com/BioFM/OpenBioMed)


### Limitations

[Highlight any limitations or potential issues of your model.]