File size: 3,268 Bytes
1db5200 fba89a8 1db5200 fba89a8 3e11e9b 1db5200 a0a497f fba89a8 a0a497f fba89a8 a0a497f 1db5200 8e05648 3e29d41 8e05648 3ea1d3b 1db5200 8950dd2 1db5200 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: apache-2.0
tags:
- medical
datasets:
- biomed
---
# BioMedGPT-LM-7B
**BioMedGPT-LM-7B** is the first large generative language model based on Llama2 in the biomedical domain.
It was fine-tuned from the Llama2-7B-Chat with millions of biomedical papers from the [S2ORC corpus](https://github.com/allenai/s2orc/blob/master/README.md).
Through further fine-tuning, BioMedGPT-LM-7B outperforms or is on par with human and significantly larger general-purpose foundation models on several biomedical QA benchmarks.
### Training Details
The model was trained with the following hyperparameters:
* Epochs: 5
* Batch size: 192
* Cutoff length: 2048
* Learning rate: 2e-5
BioMedGPT-LM-7B is finetuned on over 26 billion tokens highly pertinent to the field of biomedicine.
The fine-tuning data are extracted from 5.5 million biomedical papers in S2ORC data using PubMed Central (PMC)-ID and PubMed ID as criteria.
### Model Developers
PharMolix
### How to Use
BioMedGPT-LM-7B is the generative language model of **[BioMedGPT-10B](https://github.com/BioFM/OpenBioMed)**, an open-source version of BioMedGPT.
BioMedGPT is an open multimodal generative pre-trained transformer (GPT) for biomedicine, which bridges the natural language modality and diverse biomedical data modalities via large generative language models.
More technical details of BioMedGPT-LM-7B, BioMedGPT-10B, and BioMedGPT can be found in the [technical report](https://pan.baidu.com/s/1iAMBkuoZnNAylhopP5OgEg?pwd=7a6b).

**Intended Use Cases**
| **Method** | Parameters (B) | Setting | MedMCQA(\%) | PubMedQA(\%) |
|------------------------|----------------|-----------|-------------|--------------|
| Human (pass)* | - | Manual | - | 60.0 |
| Human (expert)* | - | Manual | 90 | 78.0 |
|------------------------|----------------|-----------|-------------|--------------|
| InstructGPT* | 175 | zero-shot | 44.0 | 73.2 |
| ChatGPT* | - | zero-shot | 44.7 | 63.9 |
| Llama* | 7 | zero-shot | 24.3 | 5.2 |
| Llama2 | 7 | zero-shot | 30.6 | 3.7 |
| Llama2-Chat | 7 | zero-shot | 35.5 | 21.9 |
|------------------------|----------------| --------- |-------------|--------------|
| Llama | 7 |Fine-tuing | 48.2 | 73.4 |
| Llama2-Chat | 7 |Fine-tuing | 48.3 | 75.5 |
| PMC-Llama | 7 |Fine-tuing | 50.5 | 69.5 |
|------------------------|----------------|-----------|-------------|--------------|
| **BioMedGPT-LM-7B** | 7 |Fine-tuing | **51.4** | **76.1** |
**Out-of-scope Uses**
### Technical Report
"BioMedGPT: Open Multimodal Generative Pre-trained Transformer for BioMedicine"
### github
[https://github.com/BioFM/OpenBioMed](https://github.com/BioFM/OpenBioMed)
### Limitations
[Highlight any limitations or potential issues of your model.]
|