File size: 8,931 Bytes
b64647b 7309d32 8909dbb b64647b fa3b309 f8f36f3 8b59af1 0fc0c0d 61bac88 b64647b b9120dc 0fc0c0d f0a226d a878171 0cee8fd b64647b d0e812d a878171 5e37b09 a878171 03b069b a878171 f492c3f b39b5a3 226f391 44825f1 0cee8fd 16715bd 0cee8fd f6a000e 87a52c6 0cee8fd 44825f1 0cee8fd b64647b 5892f7d 87a52c6 f8f36f3 8b59af1 f8f36f3 173691c d357fed f6a000e d357fed 7175ede 4735d12 7175ede 6d411c7 4735d12 6d411c7 4735d12 adf3a5f 2fe2aa3 4735d12 721285a d412ccb d357fed 0d28f36 f6a000e b64647b d094778 b64647b 0fc0c0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
---
base_model:
- Pinkstack/SuperThoughts-CoT-14B-16k-o1-QwQ
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
- code
- phi3
- cot
- o1
- reasoning
- cot
license: mit
license_link: https://huggingface.co/microsoft/phi-4/resolve/main/LICENSE
language:
- en
- multilingual
pipeline_tag: text-generation
inference:
parameters:
temperature: 0.3
widget:
- messages:
- role: user
content: How many R's in strawberry? Think step by step.
model-index:
- name: SuperThoughts-CoT-14B-16k-o1-QwQ
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 5.15
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Pinkstack%2FSuperThoughts-CoT-14B-16k-o1-QwQ
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 52.85
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Pinkstack%2FSuperThoughts-CoT-14B-16k-o1-QwQ
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 40.79
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Pinkstack%2FSuperThoughts-CoT-14B-16k-o1-QwQ
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 19.02
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Pinkstack%2FSuperThoughts-CoT-14B-16k-o1-QwQ
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 21.79
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Pinkstack%2FSuperThoughts-CoT-14B-16k-o1-QwQ
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.43
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Pinkstack%2FSuperThoughts-CoT-14B-16k-o1-QwQ
name: Open LLM Leaderboard
---
- safetensors version: Pinkstack/SuperThoughts-CoT-14B-16k-o1-QwQ
[Phi-4 Technical Report](https://arxiv.org/pdf/2412.08905) (SuperThoughts 14B is based on phi-4)
You must use this prompt format: https://huggingface.co/Pinkstack/SuperThoughts-CoT-14B-16k-o1-QwQ-GGUF#format
# We are very proud to announce, SuperThoughts, but you can just call it o1 mini 😉
A reasoning ai model based on Phi-4, which is better that QwQ at everything but Ifeval, but at a smaller size, really good at math and answers step by step in multiple languages with any prompt as reasoning is built into the prompt format.
Please check the examples we provided: https://huggingface.co/Pinkstack/SuperThoughts-CoT-14B-16k-o1-QwQ-GGUF#%F0%9F%A7%80-examples
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/QDHJhI0EVT_L9AHY_g3Br.png)
Beats qwen/qwq at MATH & MuSR & GPQA (MuSR being a reasoning benchmark)
Evaluation:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/csbdGKzGcDVMPRqMCoH8D.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/HR9WtjBhE4h6wrq88FLAf.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/GLt4ct4yAVMvYEpoYO5o6.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/CP9UF9kdBT_SW8Q79PSui.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/doEIqDrM639hRPSg_J6AF.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/yl5Et2TkCoYuIrNpDhZu9.png)
Unlike previous models we've uploaded, this one is the best one we've published! Answers in two steps: Reasoning -> Final answer like o1 mini and other similar reasoning ai models.
# 🧀 Which quant is right for you? (all tested!)
- ***Q3:*** This quant should be used on most high-end devices like rtx 2080TI's, Responses are very high quality, but its slightly slower than Q4. (Runs at ~1 tokens per second or less on a Samsung z fold 5 smartphone.)
- ***Q4:*** This quant should be used on high-end modern devices like rtx 3080's or any GPU,TPU,CPU that is powerful enough and has at minimum 15gb of available memory, (On servers and high-end computers we personally use it.) reccomened.
- ***Q8:*** This quant should be used on very high-end modern devices which can handle it's power, it is very powerful but q4 is more well rounded, not recommended.
# [Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Pinkstack__SuperThoughts-CoT-14B-16k-o1-QwQ-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Pinkstack%2FSuperThoughts-CoT-14B-16k-o1-QwQ&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
Please note, the low IFEVAL results is probably due to it always reasoning, it does have issues with instruction following.
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 31.17|
|IFEval (0-Shot) | 5.15|
|BBH (3-Shot) | 52.85|
|MATH Lvl 5 (4-Shot)| 40.79|
|GPQA (0-shot) | 19.02|
|MuSR (0-shot) | 21.79|
|MMLU-PRO (5-shot) | 47.43|
# Format
the model uses this prompt format: (modified phi-4 prompt)
```
{{ if .System }}<|system|>
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|user|>
{{ .Prompt }}<|im_end|>
{{ end }}<|assistant|>{{ .CoT }}<|CoT|>
{{ .Response }}<|FinalAnswer|><|im_end|>
```
It is recommended to use a system prompt like this one:
```
You are a helpful ai assistant. Make sure to put your finalanswer at the end.
```
# 🧀 Examples:
(q4_k_m, 10GB rtx 3080, 64GB memory, running inside of MSTY, all use "You are a friendly ai assistant." as the System prompt.)
**example 1:**
![example1](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/NoLJREYFU8LdMwynyLLMG.png)
**example 2:**
![2](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/uboFipmS1ulfxeDgMBsBH.png)
**example 3:**
![example2](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/c4h-nw0DPTrQgX-_tvBoT.png)
**example 4:**
![example1part1.png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/Dcd6-wbpDQuXoulHaqATo.png)
![example1part2.png](https://cdn-uploads.huggingface.co/production/uploads/6710ba6af1279fe0dfe33afe/CoBYmYiRt9Z4IDFoOwHxc.png)
All generated locally and pretty quickly too!
# 🧀 Information
- ⚠️ A low temperature must be used to ensure it won't fail at reasoning. we use 0.3 - 0.8!
- ⚠️ Due to the current prompt format, it may sometimes put <|FinalAnswer|> without providing a final answer at the end, you can ignore this or modify the prompt format.
- this is out flagship model, with top-tier reasoning, rivaling gemini-flash-exp-2.0-thinking and o1 mini. results are overall similar to both of them, and it even beats QwQ at certain benchmarks.
**Supported languages**: Arabic, Chinese, Czech, Danish, Dutch, English, Finnish, French, German, Hebrew, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Russian, Spanish, Swedish, Thai, Turkish, Ukrainian
# 🧀 Uploaded model
- **Developed by:** Pinkstack
- **License:** MIT
- **Finetuned from model :** Pinkstack/PARM-V1-phi-4-4k-CoT-pytorch
This Phi-4 model was trained with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |