--- pipeline_tag: text-to-image widget: - text: >- Three cow grazing in a bay window output: url: cow.png - text: >- A living room with television, sofa and a red outfit, using a ramp output: url: red_sofa.png - text: >- A pile of bananas output: url: banana.png license: gpl-3.0 --- ## BitDiffusionV0.1 This is the initial version of the image model trained on the Bittensor network within subnet 17. It's not expected for this model to perform as well as MidJourney V6 at the moment. However, it does generate better images than base SDXL model. **Trained on the dataset of Subnet 19 Vision.** ## Settings for BitDiffusionV0.1 Use these settings for the best results with BitDiffusionV0.1: CFG Scale: Use a CFG scale of 8 Steps: 40 to 60 steps Sampler: DPM++ 2M SDE Scheduler: Karras Resolution: 1024x1024 ## Use it with 🧨 diffusers ```python import torch from diffusers import ( StableDiffusionXLPipeline, KDPM2AncestralDiscreteScheduler, AutoencoderKL ) # Load VAE component vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 ) # Configure the pipeline pipe = StableDiffusionXLPipeline.from_pretrained( "PlixAI/BitDiffusionV0.1", vae=vae, torch_dtype=torch.float16 ) pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to('cuda') # Define prompts and generate image prompt = "black fluffy gorgeous dangerous cat animal creature, large orange eyes, big fluffy ears, piercing gaze, full moon, dark ambiance, best quality, extremely detailed" negative_prompt = "nsfw, bad quality, bad anatomy, worst quality, low quality, low resolutions, extra fingers, blur, blurry, ugly, wrongs proportions, watermark, image artifacts, lowres, ugly, jpeg artifacts, deformed, noisy image" image = pipe( prompt, negative_prompt=negative_prompt, width=1024, height=1024, guidance_scale=7.5, num_inference_steps=50 ).images[0] ``` Training Subnet : https://github.com/PlixML/pixel Data Subnet : https://github.com/namoray/vision