File size: 1,627 Bytes
4134edf
 
 
 
 
 
 
 
 
 
09cd5c4
4134edf
09cd5c4
58139a1
4b440c9
 
 
 
 
 
 
 
 
 
 
 
4134edf
44d136a
 
 
 
 
4134edf
 
 
 
 
 
 
 
 
ef00943
4134edf
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
---

# Lumina-3

Lumina-3 is a Mixture of Experts (MoE) using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing).
This model uses a context window of up to 32k.

## 🏆 Open LLM Leaderboard Evaluation Results 

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |74.53|
|AI2 Reasoning Challenge (25-Shot)|71.16|
|HellaSwag (10-Shot)              |87.20|
|MMLU (5-Shot)                    |65.52|
|TruthfulQA (0-shot)              |68.25|
|Winogrande (5-shot)              |82.08|
|GSM8k (5-shot)                   |72.93|

# Quants

Special thanks to GGUFs made by [mradermacher](https://huggingface.co/mradermacher)
* [mradermacher/Lumina-3-GGUF](https://huggingface.co/mradermacher/Lumina-3-GGUF)

## 💻 Usage

```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Ppoyaa/Lumina-3"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```