File size: 1,627 Bytes
4134edf 09cd5c4 4134edf 09cd5c4 58139a1 4b440c9 4134edf 44d136a 4134edf ef00943 4134edf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
---
# Lumina-3
Lumina-3 is a Mixture of Experts (MoE) using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing).
This model uses a context window of up to 32k.
## 🏆 Open LLM Leaderboard Evaluation Results
| Metric |Value|
|---------------------------------|----:|
|Avg. |74.53|
|AI2 Reasoning Challenge (25-Shot)|71.16|
|HellaSwag (10-Shot) |87.20|
|MMLU (5-Shot) |65.52|
|TruthfulQA (0-shot) |68.25|
|Winogrande (5-shot) |82.08|
|GSM8k (5-shot) |72.93|
# Quants
Special thanks to GGUFs made by [mradermacher](https://huggingface.co/mradermacher)
* [mradermacher/Lumina-3-GGUF](https://huggingface.co/mradermacher/Lumina-3-GGUF)
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Ppoyaa/Lumina-3"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |