File size: 1,925 Bytes
21be062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- MaziyarPanahi/Calme-7B-Instruct-v0.9
- S-miguel/The-Trinity-Coder-7B
- grimjim/kukulemon-7B
base_model:
- MaziyarPanahi/Calme-7B-Instruct-v0.9
- S-miguel/The-Trinity-Coder-7B
- grimjim/kukulemon-7B
---

# Lumina-5-Instruct

Lumina-5-Instruct is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [MaziyarPanahi/Calme-7B-Instruct-v0.9](https://huggingface.co/MaziyarPanahi/Calme-7B-Instruct-v0.9)
* [S-miguel/The-Trinity-Coder-7B](https://huggingface.co/S-miguel/The-Trinity-Coder-7B)
* [grimjim/kukulemon-7B](https://huggingface.co/grimjim/kukulemon-7B)

## 🧩 Configuration

```yaml
base_model: MaziyarPanahi/Calme-7B-Instruct-v0.9
experts:
  - source_model: MaziyarPanahi/Calme-7B-Instruct-v0.9
    positive_prompts:
    - "chat"
    - "assistant"
  - source_model: S-miguel/The-Trinity-Coder-7B
    positive_prompts:
    - "code"
    - "reason"
    - "math"
  - source_model: grimjim/kukulemon-7B
    positive_prompts:
    - "roleplay"
    - "write"
    - "scene"
    - "story"
```

## 💻 Usage

```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Ppoyaa/Lumina-5-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```