# CLIP Sparse Autoencoder Checkpoint This model is a sparse autoencoder trained on CLIP's internal representations. ## Model Details ### Architecture - **Layer**: 4 - **Layer Type**: hook_resid_post - **Model**: open-clip:laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K - **Dictionary Size**: 49152.0 - **Input Dimension**: 768.0 - **Expansion Factor**: 64.0 - **CLS Token Only**: False ### Training - **Training Images**: 1299936.0000 - **Learning Rate**: 0.0002 - **L1 Coefficient**: 0.0000 - **Batch Size**: 4096.0 - **Context Size**: 49.0 ## Performance Metrics ### Sparsity - **L0 (Active Features)**: 965.4101 - **Dead Features**: 0.0000 - **Mean Passes Since Fired**: 2.1601 ### Reconstruction - **Explained Variance**: 0.9987 - **Explained Variance Std**: 0.0032 - **MSE Loss**: 0.0000 - **L1 Loss**: 1456.6568 - **Overall Loss**: 0.0001 ## Training Details - **Training Duration**: 3927 seconds - **Final Learning Rate**: 0.0000 - **Warm Up Steps**: 200.0 - **Gradient Clipping**: 1.0 ## Additional Information - **Original Checkpoint Path**: /network/scratch/p/praneet.suresh/imgnet_checkpoints/c8de8491-tinyclip_sae_16_hyperparam_sweep_lr/n_images_1300020.pt - **Wandb Run**: https://wandb.ai/perceptual-alignment/vanilla-imagenet-spatial_only-sweep/runs/7dfdq3cz - **Random Seed**: 42.0